

 LeCroy Application Brief No. LAB 766

Decoding NRZ Data
Using XDEV Customization to convert to digital waveform

Non-Return to Zero (NRZ) sig-
nals use two voltage levels
(high and low) to represent
logic one and logic zero values.
Traditional oscilloscopes can
capture and view these wave-
forms but do not have the capa-
bility to decode waveforms into
their digital equivalents. Oscil-
loscopes with XDEV custom
functionality can now decode
these waveforms.

In Figure 1, a block of NRZ
data is acquired as Function F1
and the parameter TIE@lv
(Time Interval Error) is applied
as parameter P1. The Virtual
Clock capability of TIE reports
the underlying bitrate as 2.488
Gb/s, which corresponds to this
OC-48 datastream. Function F2
allows for a user-defined Mat-
lab script to automatically de-
code each waveform as shown
in Figure 2. The algorithm
reads the base frequency from
the TIE parameter to locate
boundaries of each unit interval.
As the algorithm processes each
waveform edge, it appends the
logic value into a buffer of data-
stream values. When the loop
completes, the digitally-
decoded waveform and its sta-
tistics are displayed as well as
recorded to a file. This process
will repeat for each acquisition
allowing rapid in-line waveform
conversion.

Figure 1 The Virtual Clock tab of the TIE@lv parameter is used to identify
the data rate of the pseudo-random bit stream.

Figure 2: XDEV custom function reports digitally decoded waveform.

 LeCroy Application Brief No. LAB 766

clear bitstream; % erase previous bitstream values
WformOut = WformIn1 - mean(WformIn1); % offset the waveform to place the mean value
at zero
comclient off % needed for Matlab rev 6.5 - delete this line if using any other Mat-
lab revision
h = actxserver('LeCroy.WaveMasterApplication'); % establish ActiveX control between
the scope and Matlab
xincr = h.Math.F1.Out.Result.HorizontalPerStep; % sample resolution
basefreq = double(get(h.Measure.P1.Operator.BaseFrequency,'Value')); % TIE frequency
determination
baseper = 1/basefreq;
samplesperbit = ceil(baseper/xincr);

n = find(diff(WformOut>0)); % locate position of edges on the NRZ data
numberofedges = length(n);

bitcounter = 0; % initialize a bit counter
virtualclockposition = n(1); %
numones = 0; % keep track of total number of ones identified
numzeros = 0; % keep track of total number of zeros identified
for i=1:(numberofedges-1)
 virtualclockposition = n(i); % set virtual clock to coincide with NRZ edge tran-
sitions
 bitswide = round((n(i+1)-n(i))/samplesperbit); % determine how many bits occur
between edges

 for j=1:bitswide % for example if there are two zeros in a row between edges,
execute this loop twice to check both bits
 bitcounter = bitcounter + 1; % keep track of how many bits have been checked
so far

 if (WformOut(virtualclockposition + ceil(samplesperbit/2)) > 0) % the ampli-
tude is high, this bit is a One
 bitstream(bitcounter) = 1; % log the value of this bit as a zero or one for
future reference
 numones = numones + 1; % increment the total number of identified One val-
ues
 else
 bitstream(bitcounter) = 0; % the amplitude low, this bit is a Zero
 numzeros = numzeros + 1; % increment the total number of identified Zero
values
 end
 end
end

%% SAVE BITSTREAM TO A FILE
disp(' ')
bitstream = char(bitstream+48) % convert values to ascii
outputfile = 'bitstream.txt';
fid = fopen(outputfile, 'w');
fwrite(fid,bitstream,'char');
fclose(fid);
fprintf('Stats: %d Bits, %d Ones, %d Zeros, output saved to %s\n',
length(bitstream), numones, numzeros, outputfile);

Figure 3: Matlab algorithm decodes NRZ datastream

