

Remote Control
Manual

LeCroy
LSA1000 Signalyst

Revision C — March 2000

Corporate Headquarters
700 Chestnut Ridge Road
Chestnut Ridge, NY 10977–6499
Tel: (914) 578 6020, Fax: (914) 578 5985

European Manufacturing
2, rue du Pré-de-la-Fontaine
1217 Meyrin 1/Geneva, Switzerland
Tel: (41) 22 719 21 11, Fax: (41) 22 782 39 15

Internet: www.lecroy.com

Copyright © March 2000, LeCroy. All rights reserved. Information in this publication supersedes all
earlier versions. Specifications subject to change.

LeCroy, ProBus and SMART Trigger are registered trademarks of LeCroy Corporation. MathCad is
a registered trademark of MATHSOFT Inc. Centronics is a registered trademark of Data Computer
Corp. Epson is a registered trademark of Epson America Inc. PowerPC is a registered trademark of
IBM Microelectronics. MATLAB is a registered trademark of The MathWorks, Inc. DeskJet,
ThinkJet, QuietJet, LaserJet, PaintJet, HP 7470 and HP 7550 are registered trademarks of Hewlett-
Packard Company. I2C is a trademark of Philips.
Manufactured under
an ISO 9000
Registered
Quality Management
System
Visit www.lecroy.com
to view the certificate.

This electronic product is
subject to disposal and
recycling regulations that
vary by country and
region. Many countries
prohibit the disposal of
waste electronic
equipment in standard
waste receptacles.
For more information
about proper disposal
and recycling of your
LeCroy product, please
visit
www.lecroy.com/recycle.

LSA1000-RCM Rev C 0300

iii

Contents

Foreword
Explaining the LSA1000 ..v

LSA1000: Legacy of the Oscilloscope.......................................vi

Chapter 1 — Read This First!
Warranty and Product Support ...1–1

Chapter 2 — Overview of LSA1000 Control
Controlling the LSA1000 ...2–1

Chapter 3 — The LSA1000 and the Ethernet
Operating on the Ethernet..3–1

Programming Ethernet Transfers..3–6

Chapter 4 — Waveform Structure
Understanding Waveforms ...4–1

Using the INSPECT? Query ..4–3

WAVEFORM?, Related Commands, and Blocks4–5

High-Speed Waveform Transfer ...4–12

Chapter 5 — Status Registers
Using Status Registers..5–1

SYSTEM COMMANDS
About These Commands & Queries ..1

… Tabled By Short Form..3

… Tabled By Subsystem..5

The Commands and Queries ...7

Appendix A — Waveform Template

Index

iii

Contents

v

Foreword

Explaining the LSA1000
There are two manuals that explain the LSA1000.
The accompanying Operator’s Manual takes you
through the initial steps and gets you started
using the instrument. It explains basics such as
how to connect to a PC and use the software
tools supplied. Once familiar with the LSA1000’s
basic operation, use this, the Remote Control
Manual. I t contains detailed descriptions of all
the remote commands used to operate the
LSA1000 from the computer.

& Chapter 1 describes warranty, maintenance agreements,
service and return procedure.

& Chapter 2 explains the overall structure of commands to
control the LSA1000 from your PC.

& Chapter 3 gives an overview of operation over the Ethernet,
including protocol, data transfer header and problem-solving
tips.

& Chapter 4 Waveform Structure, covers important commands
and basic rules for reading and writing waveform data with
LSA1000.

& Chapter 5 describes each of the registers that can be used to
poll the LSA1000’s internal processing status.

& Appendix A is the Waveform Template.

About This
Manual…

vi

Foreword

LSA1000: Legacy of the Oscilloscope
In this publication and its companion, the
LSA1000 Operator’s Manual, references are to be
found to functions not directly applicable to the
LSA1000. Some examples are references to
"time/div", "cursors", and "display".

Their presence in dedicated LSA1000 manuals is owing to the
legacy of LeCroy DSOs (Digital Storage Oscilloscopes) in the
development of the LSA1000. Although the current practicability
of these functions may not immediately be apparent, the basic
concepts to which they adhere remain valid for the LSA1000,
and the functions are supported by remote control commands.

Moreover, in order to maintain compatibility, the LSA1000’s
remote commands have been made a subset of the commands
for the LeCroy digital oscilloscopes.

Terminology borrowed from the oscilloscope should thus be
understood to refer to the LSA1000 conceptually, as if it
possessed an oscilloscope display. It should be noted, for
example, that all commands that refer to "divisions" on a DSO
are applicable to the LSA1000: there are eight divisions full
scale in the vertical (voltage) direction, and 10 divisions in the
horizontal (time) axis.

v

Foreword

1–1

Read This First!1
Warranty and Product Support

It is recommended that you thoroughly inspect the
contents of the LSA1000 packaging immediately upon
receipt. Check all contents against the packing list/invoice
copy shipped with the instrument. Unless LeCroy is
notified promptly of any missing or damaged item,
responsibility for its replacement cannot be accepted.
Contact your nearest LeCroy Customer Service Center or
national distributor immediately.

Warranty LeCroy warrants this product for normal use and operation within
specifications for a period of three years from the date of
shipment. Calibration each year is recommended to ensure in-
spec. performance. Spares, replacement parts and repairs are
warranted for 90 days. The instrument's firmware has been
thoroughly tested and is thought to be functional, but is supplied
without warranty of any kind covering detailed performance.
Products not made by LeCroy are covered solely by the
warranty of the original equipment manufacturer.

Under the LeCroy warranty, LeCroy will repair or, at its option,
replace any product returned within the warranty period to a
LeCroy authorized service center. However, this will be done
only if the product is determined after examination by LeCroy to
be defective due to workmanship or materials, and not to have
been caused by misuse, neglect or accident, or by abnormal
conditions or operation.

Note: This warranty replaces all other warranties,
expressed or implied, including but not limited to any
implied warranty of merchantability, fitness, or adequacy
for any particular purpose or use. LeCroy shall not be liable
for any special, incidental, or consequential damages,
whether in contract or otherwise. The client will be
responsible for the transportation and insurance charges
for the return of products to the service facility. LeCroy will
return all products under warranty with transport prepaid.

1–2

Read This First!

Maintenance Agreements LeCroy provides a variety of customer support services under
Maintenance Agreements. Such agreements give extended
warranty and allow clients to budget maintenance costs after the
initial three-year warranty has expired. Other services such as
installation, training, enhancements and on-site repairs are
available through special supplemental support agreements.

Staying Up to Date LeCroy is dedicated to offering state-of-the-art instruments, by
continually refining and improving the performance of LeCroy
products. Because of the speed with which physical modifications
may be implemented, this manual and related documentation may
not agree in every detail with the products they describe. For
example, there might be small discrepancies in the values of
components affecting pulse shape, timing or offset, and —
infrequently — minor logic changes. However, be assured the
LSA1000 itself is in full order and incorporates the most up-to-date
circuitry.

LeCroy frequently updates firmware and software during
servicing to improve LSA1000 performance, free of charge
during warranty. You will be kept informed of such changes,
through new or revised manuals and other publications.

Nevertheless, you should retain this, the original manual,
for future reference to your LSA1000’s unchanged hardware
specifications.

Service and Repair Please return products requiring maintenance to the Customer
Service Department in your country or to an authorized service
facility. The customer is responsible for transportation charges
to the factory, whereas all in-warranty products will be returned
to you with transportation prepaid. Outside the warranty period,
you will need to provide us with a purchase order number before
we can repair your LeCroy product. You will be billed for parts
and labor related to the repair work, and for shipping.

1–3

How to Return a Product Contact the nearest LeCroy Service Center or office to find out
where to return the product. All returned products should be
identified by model and serial number. You should describe the
defect or failure, and provide your name and contact number. In
the case of a product returned to the factory, a Return
Authorization Number (RAN) should be used. The RAN can be
obtained by contacting the Customer Service Department.

Return shipments should be made prepaid. We cannot accept
COD (Cash On Delivery) or Collect Return shipments. We
recommend air-freighting.

It is important that the RAN be clearly shown on the outside of
the shipping package for prompt redirection to the appropriate
LeCroy department.

 What Comes with LSA1000 The following items are shipped together with the standard
configuration of the LSA1000:

Ø Getting Started Software CD-ROM

Ø AC Power Cord and Plug

Ø Operator’s Manual

Ø Remote Control Manual (this manual)

Ø NIST Calibration Certificate

Ø Declaration of Conformity

Ø Warranty.

1–4

Read This First!

Technical Assistance… Help on installation, calibration, and the use of LeCroy
equipment is available from the LeCroy Customer Service
Center in your country (see contact numbers following index).
See also below.

Hardware Assistance… Before contacting us on hardware-related questions (see below),
try the following:

Ø Review Chapter 2 of the Operator’s Manual, which covers
general technical concepts and functions such as
acquisition, triggering, and memory.

Ø See Appendix A of the Operator’s Manual for the LSA1000’s
technical specifications.

Software Assistance… Before contacting us with software-related questions, try the
following:

Ø Review Chapter 5 of the Operator’s Manual, which contains
several program examples that can be used as a starting
point when writing application-specific software using the
LSA1000.

Ø See the Remote Control Manual for questions on specific
commands, or if unsure as to which command to use.

Ø Check Frequently Asked Questions at the LeCroy web site:
www.lecroy.com

… Or Contact LeCroy Embedded Signal Analysis:

E-mail: esa@lecroy.com

Fax: ++1 914 578 4485

Phone: (800) 5-LeCroy

1–1

Read This First!1

2–1

2 Overview of LSA1000 Control

Controlling the LSA1000
The LeCroy LSA1000 is operated by remote control using a
controlling device, normally a computer but perhaps a
simple terminal. Connected via Ethernet, it has a TCP/IP
port, but also possesses a USB (Universal Serial Bus) port,
to be supported by software in the future.

The only actions of the LSA1000 that cannot be performed
remotely are power on or off.

This chapter introduces the basic concepts affecting the
instrument’s operation, while the following chapter explains how
it operates through the Ethernet. Chapter 4 offers a detailed
description and run-through of the transfer and formatting of
waveforms. And Chapter 5 explains the use of status bytes for
error reporting.

The special System Commands section provides a complete
directory and description of the remote control commands and
queries that can be used to operate the LSA1000.

Implementation
Standard

To the greatest extent possible, these remote commands
conform to the IEEE 488.2* standard, which may be considered
as an extension of the IEEE 488.1 standard, dealing mainly with
electrical and mechanical issues.

Program Messages Program messages sent to the LSA1000 from the external
controller must conform to precise format structures. The
instrument will execute such messages, but will ignore program
messages in which errors are detected.

Warning or error messages are normally not reported unless the
controller explicitly examines the relevant status register. Or if
the status-enable registers have been set so that the controller
can be interrupted when an error occurs.

* ANSI/IEEE Std. 488.2–1987, IEEE Standard Codes, Formats, Protocols, and Common
Commands. The Institute of Electrical and Electronics Engineers Inc., 345 East 47th Street,
New York, NY 10017, USA.

2–2

Overview

Commands and Queries Program messages consist of either one or several commands or
queries or both. A command directs the instrument to change its
state — for example, to change its timebase or vertical sensitivity. A
query asks the instrument about its state. Very often, the same
mnemonic is used for a command and a query, the query being
identified by a <?> after the last character.

For example, to change the timebase to 2 ms/div, the controller
sends the following command to the instrument:

TIME_DIV 2 MS

To ask the instrument about its timebase, this query should be sent:

TIME_DIV?

A query causes the instrument to send a response message. The
control program should read this message with a ‘read’ instruction to
the ETHERNET interface of the controller. The response message
to the query above might be:

TIME_DIV 10 NS

The portion of the query preceding the question mark is repeated as
part of the response message. If desired, this text may be
suppressed with the command “COMM_HEADER”.

Depending on the state of the instrument and the computation to be
done, the controller may have to wait up to several seconds for a
response. Command interpretation does not have priority over other
LSA1000 activities. It is therefore judicious to set the controller IO
timeout conditions to three or more seconds. In addition, it must be
remembered that an incorrect query message will not generate a
response message.

Program Message Form An instrument is remotely controlled with program messages that
consist of one or several commands or queries, separated by
semicolons <;> and ended by a terminator:

<command/query>;.........;<command/query> <terminator>

Upper or lower-case characters or both can be used in program
messages.

The instrument does not decode an incoming program message
before a terminator has been received, except if the program

2–3

message is longer than the 256 byte input buffer of the instrument,
when the LSA1000 starts analyzing the message when the buffer is
full. The commands or queries are executed in the order in which
they are transmitted.

See Chapter 3 for a description of LeCroy’s Versatile Instrument
Control Protocol (VICP) for operation over ETHERNET.

Example ARM
This program message consists of a single command that instructs
the instrument to change its state from “stopped” to “single”. The
terminator is not shown, as it is assumed to be automatically added
by the interface driver routine.

COMB 2; ARM; DATE?
This program message consists of two commands, followed by a
query. They instruct the instrument to combine channels, arm the
acquisition, and then ask for the current date. Again, the terminator
is not shown.

Command/Query Form The general form of a command or a query consists of a command
header <header> optionally followed by one or several parameters
<data> separated by commas:

<header>[?] <data>,...,<data>

The notation [?] shows that the question mark is optional (turning
the command into a query). The detailed listing of all commands in
System Commands indicates which may also be queries. There is a
space between the header and the first parameter. There are
commas between parameters.

Example DATE 15,JAN,1998,13,21,16
This command instructs the LSA1000 to set its date and time to 15
JAN 1998, 13:21:16. The command header “DATE” indicates the
action, the 6 data values specify it in detail.

Header The header is the mnemonic form of the operation to be performed
by the LSA1000. All command mnemonics are listed in alphabetic
order in the System Commands section.

The majority of the command or query headers have a long form for
optimum legibility and a short form for better transfer and decoding
speed. The two forms are fully equivalent and can be used

2–4

Overview

interchangeably. For example, the following two commands for
switching to the normal trigger mode are fully equivalent:

TRIG_MODE NORM and TRMD NORM

Some command/query mnemonics are imposed by the IEEE 488.2
standard. They are standardized so that different instruments
present the same programming interface for similar functions. All
these mnemonics begin with an asterisk <*>. For example, the
command “*RST” is the IEEE 488.2 imposed mnemonic for
resetting the instrument, whereas “*TST?” instructs the instrument to
perform an internal self-test and to report the outcome.

Header path Some commands or queries apply to a sub-section of the LSA1000
— a single input channel or a trace, for example. In such cases, the
header must be preceded by a path name that indicates the channel
or trace to which the command applies. The header path normally
consists of a two-letter path name followed by a colon <:>
immediately preceding the command header.

One of the waveform traces can usually be specified in the header
path (refer to the individual commands listed in System Commands
for details of the values applying to given command headers):

C1, C2 Channels 1 and 2
M1, M2, M3, M4 Memories 1, 2, 3, 4
TA, TB, TC, TD Traces A, B, C and D
EX External trigger

Example C1:OFST − 300 MV
Set the offset of Channel 1 to − 300 mV

Header paths need only be specified once. Subsequent commands
whose header destination is not indicated are assumed to refer to
the last defined path. For example, the following commands are
identical:

C2:VDIV?; C2:OFST? What is the vertical sensitivity
and the offset of channel 2?

C2:VDIV?; OFST? Same as above, without
repeating the path.

2–5

Data Whenever a command/query uses additional data values, the
values are expressed in terms of ASCII characters. There is a single
exception: the transfer of waveforms with the command/query
“WAVEFORM”, where the waveform may be expressed as a
sequence of binary data values. Chapter 5 gives a detailed
explanation of the format of waveforms.

ASCII data can have the form of character, numeric, string or block
data.

Numeric Data The numeric data type is used to enter quantitative information.
Numbers can be entered as integers or fractions, or in exponential
representation.

C2:OFST 3.56 Set the DC offset of Channel 2 to
3.56 V.

TDIV 5.0E− 6 Adjust the timebase to 5 µs/div.

Examples There are many ways of setting the timebase of the instrument
to 5 µs/div:

TDIV 5E-6 Exponential notation, without any suffix.

TDIV 5 US Suffix multiplier “U” for 1E− 6, with the
(optional) suffix “S” for seconds.

or

Note: Numeric values may be followed by multipliers and
units, modifying the value of the numerical expression.
The following mnemonics are recognized:

EX 1E18 Exa- PE 1E15 Peta-

T 1E12 Tera- G 1E9 Giga-

MA 1E6 Mega- K 1E3 kilo-

M 1E− 3 milli- U 1E− 6 micro-

N 1E− 9 nano- PI 1E− 12 pico-

F 1E− 15 femto- A 1E− 18 atto-

2–6

Overview

TDIV 5000 NS

TDIV 5000E-3 US

Block Data These are binary data values coded in hexadecimal ASCII, i.e. 4-bit
nibbles are translated into the digits 0,...9, A,...F and transmitted as
ASCII characters. They are used only for the transfer of waveforms
(command “WAVEFORM”) and of the instrument configuration

Response Message Form The instrument sends a response message to the controller, as an
answer to a query. The format of such messages is the same as
that of program messages, i.e. individual responses in the format of
commands, separated by semicolons <;> and ended by a
terminator. They can be sent back to the instrument in the form in
which they are received, and will be accepted as valid commands.

For example, if the controller sends the program message:

TIME_DIV?;TRIG_MODE NORM;C1:VDIV?
(terminator not shown).

The instrument might respond as follows:

TIME_DIV 50 NS;C1:VDIV 125mV (terminator not shown).

The response message refers only to the queries: “TRIG_MODE” is
left out. If this response is sent back to the instrument, it is a valid
program message for setting its timebase to 50 ns/div and the input
coupling of Channel 1 to 50 Ω.

Whenever a response is expected from the instrument, the control
program must instruct the ETHERNET interface to read from the
instrument.

The instrument uses somewhat stricter rules for response messages
than for the acceptance of program messages. Whereas the
controller may send program messages in upper or lower case
characters, response messages are always returned in upper case.
Program messages may contain extraneous spaces or tabs (white
space); response messages do not. And while program messages
may contain a mixture of short and long command/query headers,
response messages always use short headers as a default.
However, the instrument can be forced with the command
“COMM_HEADER” to use long headers or no headers at all. If the

2–7

response header is omitted, the response transfer time is
minimized, but such a response could not be sent back to the
instrument again. In this case suffix units are also suppressed in the
response.

If the trigger slope of Channel 1 is set to negative, the query
“C1:TRSL?” could yield the following responses:

C1:TRIG_SLOPE NEG header format: long
C1:TRSL NEG header format: short
NEG header format: off

Waveforms which are obtained from the instrument using the query
“WAVEFORM?” constitute a special kind of response message.
Their exact format can be controlled via the “COMM_FORMAT”
and “COMM_ORDER” commands.

2–1

2 Overview of LSA1000 Control

3–1

The LSA1000 and the Ethernet3
Operating on the Ethernet

All LSA1000 functions are controlled via Ethernet, the LAN
(Local Area Network) software standard. The instrument
uses Ethernet’s TCP/IP network protocol, accessed by the
BSD Sockets API. For connecting to PC or network over the
Ethernet, see also Chapter 4 of the accompanying
Operator’s Manual.

This API (Applications Programming Interface) sits above the
TCP/IP protocol stack in all UNIX systems and is also available
in Windows 95 and Windows NT. It is for the most part platform-
independent, and should allow the same source code to compile
and run on each of the supported systems.

WinSock The commonly known WinSock API, derived from the original
BSD Sockets API, may also be used to communicate with BSD
Sockets-based systems. WinSock, for Windows Sockets, is used
by the leading Internet servers.

TCP (Stream Socket) Of the two types of connections supported by BSD Sockets,
UDP and TCP, the LSA1000 uses TCP — also called stream
socket — as its underlying protocol. This is a ‘reliable’ protocol,
which ensures that packets are in the correct sequence and that
none are missing.

VICP The Versatile Instrument Control Protocol (VICP) is the LSA1000
protocol for Ethernet operation. The connection established
between the controlling device, or client, and the LSA1000, or
server, is made using a known port number. Each of the
common Internet protocols uses a predefined port number —
FTP, for example, uses 21, and HTTP 80. The VICP port
number is 1861.

Note: A USB (Universal Serial Bus) port is located on the
instrument’s rear panel even though USB communication is
not supported at this time. It is intended that this
communication protocol will be supported in future LeCroy
software releases.

3–2

The LSA1000 and the Ethernet

The client sends standard ASCII remote commands through the
Ethernet socket, just as they would be sent via GPIB, but with an
8-byte header at the start of each transfer. This header contains
information about the type of block and its length. Block types
include ‘Data with/without EOI’, and Device Clear, and allow
GPIB behavior to be emulated.

Addressing Every Ethernet device has an IP address designated by four
numbers between 0 and 255, separated by periods — for
example, 12.34.56.78. Your LSA1000’s address is set to
172.25.1.2 at the factory but can be changed using the
COMM_NET command.

Standard Messages The following are IEEE 488.1 standard messages that go
beyond mere reconfiguration of the bus and that have an effect
on the operation of the instrument. All except GET are executed
immediately upon reception — not in chronological order.

Ø In response to a universal Device CLear (DCL) or a
Selected Device Clear message (SDC), the LSA1000 clears
the input or output buffers, aborts the interpretation of the
current command (if any) and clears any pending
commands. Status registers and status-enable registers are
not cleared. Although DCL has an immediate effect it can
take several seconds to execute this command if the
instrument is busy.

Ø The Group Execute Trigger message (GET) causes the
LSA1000 to arm the trigger system. It is functionally
identical to the “*TRG” command.

3–3

Programming Ethernet Transfers
Data Transfer Header The format of the header sent before each data block, both to and

from the LSA1000, is set out in the following table:

Byte # Purpose
0 Operat ion
1 Header Version
2 Spare (reserved for future expansion)
3 Spare (reserved for future expansion)
4 Block Length, (bytes of data) , MSB
5 Block Length (bytes of data)
6 Block Length (bytes of data)
7 Block Length, (bytes of data) , LSB

The ‘Operation’ bits and meanings are:

D7 D6 D5 D4 D3 D2 D1 D0
DATA REMOTE LOCKOUT CLEAR SRQ Reserved Reserved EOI

Data Bit Mnemonic Purpose
D7 DATA Data block (D0 indicates termination with/without EOI)

D6 REMOTE Remote Mode

D5 LOCKOUT Local Lockout (Lockout front-panel)

D4 CLEAR Device Clear (if sent with data, clear occurs before data block is passed to
parser)

D3 SRQ SRQ (Device to PC only)

D2..D1 Reserved Reserved for future expansion

D0 EOI Block terminated in EOI
Logic "1" = use → EOI terminator
Logic "0" = no EOI terminator

It is possible that the LSA1000 and the controlling application
will get out of sync with each other. For this, a recovery
mechanism has been defined, and the controller at the end of

3–4

The LSA1000 and the Ethernet

the connection that detects the problem is responsible for
closing the socket and re-opening it.

Problem Solving The TCP ‘NAGLE’ algorithm: One of the algorithms used in
the TCP layer of the TCP/IP stack is the cause of important
remote control performance problems. This algorithm has the
function of buffering up small packets and sending them only
when a ‘large’ packet has been filled or a time limit of 200 ms
has expired. Even a simple query is bound by these limitations.

However, when NAGLE is turned off, this ‘round-trip’ time is
reduced by approximately one hundred. The following function
call disables the algorithm when using the standard BSD
Sockets API of the ‘C’ language (equivalent function calls may
exist in other environments).

const int disable = 1;

if (0 != setsockopt(socket, IPPROTO_TCP,
TCP_NODELAY, (char*)&disable, sizeof(disable)))

{

 … failed …

}

Multiple Client Support: The current design of network remote
control allows support of only one client at a time. This applies
equally to the operation of the LSA1000. And because of this the
number of simultaneous connections that can be made with the
instrument has been restricted to one.

This can cause problems if a remote client disconnects or hangs
without closing its connection (socket). Unfortunately there is no
‘clean’ way for the server to know when this has happened. If the
LSA1000 seems to be refusing connections then a reboot may
be required.

This problem is due to be addressed in a future revision of the
protocol.

3–5

Problem Solving C’ Language: The following sample ‘C’ code allows a simple dialog
to be established with the LSA1000. The sockets are used in a
blocking mode (processing is suspended while a response is
awaited). Non-blocking operation is beyond the scope of this
manual, but is covered in almost any BSD sockets reference.

/*--

LeCroy LSA1000 BSD Sockets Remote Control Example

Overview:
This example shows how to send a remote query

to a LSA1000
and read it's response. It should be used as

a model for more
complex remote control systems.

Requirements:
Microsoft Visual C++ 4.x, 5.0 compiler
Windows 95/NT host

Version: 1.0, August 14th

Notes:
Ensure that the SERVER_ADDRESS correctly

reflects the address of
the device under control.

 --
------------------*/

#include "windows.h"
#include <stdio.h>

#define SERVER_PORT 1861
#define SERVER_ADDRESS "172.25.1.2"
#define HEADER_LENGTH 8

#define FLAG_EOI 0x80 + 0x01
#define FLAG_NO_EOI 0x80

int socketFd; /* client socket handle */

/* function prototypes */
BOOL connectToScope();
void disconnectFromScope();
int readString(char *replyBuf, int userBufferSize);
BOOL sendString(char *message, int bytesToSend, BOOL
eoiTermination);

/* main: program entry point */
int main()

3–6

The LSA1000 and the Ethernet

{
 char replyBuf[81];

 connectToScope();
 sendString("*idn?\n", 6, TRUE);
 readString(replyBuf, 80);
 disconnectFromScope();

 printf("Scope's reply: [%s]\n", replyBuf);

 return(0);
}

/* connectToScope: connect to a network device */
BOOL connectToScope()
{
 SOCKADDR_IN serverAddr; /* server's
socket address */
 int sockAddrSize = sizeof (SOCKADDR); /* size of
socket address structures */

 /* one-time initialization of WinSock
(not required on UNIX platforms) */
int err;
WORD wVersionRequested = MAKEWORD(1, 1);
WSADATA wsaData;

err = WSAStartup(wVersionRequested, &wsaData);
if (err != 0)
{

 printf("ERROR: could not initialize WinSock\n");
 return(FALSE);
}

 /* build server socket address */
serverAddr.sin_family = AF_INET;
serverAddr.sin_port = htons (SERVER_PORT);

if ((serverAddr.sin_addr.s_addr =
inet_addr(SERVER_ADDRESS)) == -1)

{
 printf("ERROR: Bad server address\n");
 return(FALSE);

}

 /* create client's socket */
 socketFd = socket(AF_INET, SOCK_STREAM, 0);

if (socketFd == INVALID_SOCKET)
{
 printf("ERROR: socket() failed, error code =

%d\n", WSAGetLastError());
 return(FALSE);

}

 /* connect to server (scope) */

3–7

if ((connect(socketFd, (SOCKADDR FAR *) &serverAddr,
sockAddrSize)) == SOCKET_ERROR)

{
 printf("ERROR: socket() failed, error code =
%d\n", WSAGetLastError());

 return(FALSE);
}

 /* success */
return(TRUE);

}

/* disconnectFromScope: disconnect from a network device */
void disconnectFromScope()
{
 closesocket(socketFd);
}

/* sendString: send a string to the device, with or without
EOI termination */
BOOL sendString(char *message, int bytesToSend, BOOL
eoiTermination)
{
 static unsigned char headerBuf[HEADER_LENGTH];
 int bytesSent;

 /* send header */
if(eoiTermination)

 headerBuf[0] = FLAG_EOI;
else
 headerBuf[0] = FLAG_NO_EOI;
headerBuf[1] = 1; /* header

version 1 */
headerBuf[2] = 0x00; /* unused */
headerBuf[3] = 0x00; /* unused */
*((unsigned long *) &headerBuf[4]) =

htonl(bytesToSend); /* message size */

if (send(socketFd, (char *) headerBuf,
HEADER_LENGTH, 0) != HEADER_LENGTH)

{
 printf("ERROR: could not send header\n");

 return(FALSE);
}

 /* send contents of message */
bytesSent = send(socketFd, message, bytesToSend, 0);
if ((bytesSent == ERROR) || (bytesSent !=

bytesToSend))
{
 printf("ERROR: 'send' failed\n");
 return(FALSE);
}

 return(TRUE);
}

3–8

The LSA1000 and the Ethernet

/* readString: read a string from the device into a user-
supplied buffer */
int readString(char *replyBuf, int userBufferSize)
{

int blockSize = 0, thisBlockSize, bytesReceived;
BOOL blockEOITerminated = FALSE;
unsigned char headerBuf[HEADER_LENGTH];

/* read the header */
if(recv(socketFd, (char *) headerBuf,

HEADER_LENGTH, 0) == 8)
{

 /* extract the number of bytes contained
in this packet */

 blockSize = ntohl(*((unsigned long *)
&headerBuf[4]));

 /* check the integrity of the header */
 if(!((headerBuf[0] == FLAG_EOI ||

headerBuf[0] == FLAG_NO_EOI) &&
headerBuf[1] == 0x01))

 {
 /* error state, cannot recognise

header since we
 are out of sync, need to

close & reopen the socket */
disconnectFromScope();
connectToScope();
return(0);

 }

 /* inform the caller of the EOI state */
 if(headerBuf[0] == 0xaa)
 blockEOITerminated = TRUE;

}

/* read the data block */
thisBlockSize = min(userBufferSize,

blockSize);

bytesReceived = recv(socketFd, replyBuf,
thisBlockSize, 0);

if(bytesReceived != thisBlockSize)
 printf("ERROR: truncated read\n");
else

 replyBuf[bytesReceived] = '\0'; /*
ensure string termination */

return(bytesReceived);
}

3–1

The LSA1000 and the Ethernet3

4–1

4 Waveform Structure

Understanding Waveforms
This chapter covers the reading and writing of waveforms
in remote control, and attempts to explain their structure
and content.

Basic Structure Waveforms can be divided into two basic entities. One is the basic
data array: the raw data values from the LSA1000’s ADCs (Analog–
to–Digital Converters) in the acquisition. The other is the
accompanying descriptive information, such as vertical and
horizontal scale, and time of day, necessary for a full understanding
of the information contained in the waveform.

This information can be accessed by remote control using the
INSPECT? Query, which interprets it in an easily understood ASCII
text form. It can be more rapidly transferred using the
WAVEFORM? query, or written back into the instrument with the
WAVEFORM command.

The LSA1000 itself contains a data structure, or template, which
provides a detailed description of how the waveform’s information is
organized.

Waveforms can also be stored in pre-formatted ASCII output, for
popular spreadsheets and math processing packages, using the
STORE and STORE_SETUP commands.

Waveform Template This gives a detailed description of the form and content of the
logical data blocks of a waveform, and is provided as a
reference. Although a sample template is given elsewhere in this
manual (see Appendix A), it is suggested that the TEMPLATE?
query and the actual instrument template be used. The template
may change as the instrument’s firmware is enhanced, and it will
help provide backward compatibility for the interpretation of
waveforms.

Logical Data Blocks A waveform normally contains a waveform descriptor block and a
data array block. However, in more complicated cases, one or more
other blocks will be present.

4–2

Waveform Structure

Ø Waveform Descriptor block (WAVEDESC): This block includes
all the information necessary to reconstitute the display of the
waveform from the data. This includes:
Ø hardware settings at the time of acquisition
Ø the exact time of the event
Ø the kinds of processing that have been performed
Ø the name and serial number of the instrument
Ø the encoding format used for the data blocks
Ø miscellaneous constants.

Ø Optional User-provided Text block (USERTEXT): The
WFTX command can be used to put a title or description of
a waveform into this block. The WFTX? query command
gives an alternative way to read it. This text block can hold
up to 160 characters. They can be displayed in the TEXT +
TIMES status menu as four lines of 40 characters.

Ø First data array block (SIMPLE or DATA_ARRAY_1): This is
the basic integer data of the waveform. It can be raw or
corrected ADC data or the integer result of waveform
processing.

Ø Second data array block (DATA_ARRAY_2): This second
data array is needed to hold the results of processing
functions such as the Extrema (WP01 option) or Complex
FFT (WP02 option). In such cases, the data arrays contain:

Extrema FFT
DATA_ARRAY_1 Roof trace Real part

DATA_ARRAY_2 Floor trace Imaginary part

Note: The Template also describes an array named DUAL.
This is simply a way to allow the INSPECT? command to
examine the two data arrays together.

4–3

Using the INSPECT? Query
The query INSPECT? is a simple way to examine the
contents of a waveform in remote control.

Usable on both the data and descriptive parts, its most basic form
is:

INSPECT? “name”
where the template gives the name of a descriptor item or data
block. The answer is returned as a single string, but may span many
lines. Some typical dialogue:

question C1:INSPECT? “VERTICAL_OFFSET”
response C1:INSP “VERTICAL_OFFSET: 1.5625e− 03”
question C1:INSPECT? “TRIGGER_TIME”
response C1:INSP “TRIGGER_TIME: Date = FEB 17, 1994,

Time = 4: 4:29.5580”

INSPECT? can also be used to provide a readable translation of the
full waveform descriptor block with:

INSPECT? “WAVEDESC”

The template dump will give details of the interpretation of each of
the parameters. INSPECT? is also used to examine the measured
data values of a waveform using:

INSPECT? “SIMPLE”
For example, for an acquisition with 52 points:

INSPECT? “SIMPLE”
C1:INSP “
0.0005225 0.0006475 − 0.00029 − 0.000915 2.25001E − 05 0.000835
0.0001475 − 0.0013525 − 0.00204 − 4E − 05 0.0011475 0.0011475

− 0.000915 − 0.00179 − 0.0002275 0.0011475 0.001085 − 0.00079
− 0.00179 − 0.0002275 0.00071 0.00096 − 0.0003525 − 0.00104
0.0002725 0.0007725 0.00071 − 0.0003525 − 0.00129 − 0.0002275
0.0005225 0.00046 − 0.00104 − 0.00154 0.0005225 0.0012725
0.001335 − 0.0009775 − 0.001915 − 0.000165 0.0012725 0.00096

− 0.000665 − 0.001665 − 0.0001025 0.0010225 0.00096 − 0.0003525
− 0.000915 8.50001E − 05 0.000835 0.0005225
”

4–4

Waveform Structure

These numbers are the fully converted measurements in volts.
Of course, when the data block contains thousands of items the
string will contain a great many lines.

Depending on the application, the data may be preferred in its
raw form as either a BYTE (8 bits) or a WORD (16 bits) for each
data value. In this case the relations given below must be used
in association with WAVEFORM? to interpret the measurement.
It might then say:

INSPECT? “SIMPLE”,BYTE

The examination of data values for waveforms with two data
arrays can be performed as follows:

INSPECT? “DUAL” to get pairs of data
values on a single line

INSPECT? “DATA_ARRAY_1” to get the values of the
first data array

INSPECT? “DATA_ARRAY_2” to get the values of the
second data array.

Finally… INSPECT? is useful, but it is also a rather verbose way to send
information. As a query form only, INSPECT? cannot be used to
send a waveform back into the LSA1000. Users who require this
capability or speed or both should instead use the WAVEFORM
query or commands. It is possible to examine just a part of the
waveform or a sparsed form of it, using the
WAVEFORM_SETUP command covered later in this chapter.

Programmers might find it convenient, too, to combine the
capabilities of the inspect facility with the waveform query
command in order to construct files containing a plain text
version of the waveform descriptor together with the full
waveform in a format suitable for retransmission to the
instrument. This can be done for a waveform in a memory
location by sending the command

MC:INSPECT? “WAVEDESC”;WAVEFORM?

and putting the response directly into a disk file.

4–5

WAVEFORM?, Related Commands, and
Blocks
Using the WAVEFORM? query is an effective way to
transfer waveform data using the block formats defined in
the IEEE-488.2 standard. Responses can then be
downloaded back into the instrument using the
WAVEFORM command.

All of a waveform’s logical blocks can be read with the single
query:

C1:WAVEFORM?

This is the preferred form for most applications due to its
completeness. Time and space are the advantages when
reading many waveforms with the same acquisition conditions,
or when the interest is only in large amounts of raw integer data.

And any single block can be chosen for reading with a query
such as:

C1:WAVEFORM? DAT1

The description In the System Commands section provides the
various block names.

Interpreting the
Waveform Descriptor

The binary response to a query of the form:

C1:WAVEFORM? or C1:WAVEFORM? ALL

can be placed in a disk file and then dumped to show the following
hexadecimal and ASCII form:

Note: A waveform query response can easily be a block
containing over 16 million bytes if it is in binary format and
twice as much if the HEX option is used.

4–6

Waveform Structure

Ø Byte
Offset #

B i n a r y C o n t e n t s i n
H e x a d e c i m a l

ASCII
Translation
(.= uninteresting)

C1:WFALL,#90000
00450

 WAVEDESC...
.....LECROY_2_2.
................
................
................
.LECROYLSA1000..

0
16

32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352

367
368
384
400
416
432
448
464

0
11
27
43
59
75
91

107
123
139
155
171
187
203
219
235
251
267
283
299
315
331

0
1

17
33
49
65
81
97

43 31 3A 57 46 20 41 4C 4C 2C 23 39 30 30 30 30
30 30 34 35 30

 57 41 56 45 44 45 53 43 00 00 00
00 00 00 00 00 4C 45 43 52 4F 59 5F 32 5F 32 00
00 00 00 00 00 00 01 00 00 00 00 01 5A 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 68 00 00 00 00 00 00 00 00 00 00 00
00 4C 45 43 52 4F 59 4C 53 41 31 30 30 30 00 00
00 37 84 09 40 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 34 00 00 00 34 00 00 00
32 00 00 00 00 00 00 00 33 00 00 00 00 00 00 00
01 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00
00 34 83 12 6F 3A 0D 8E C9 46 FE 00 00 C7 00 00
00 00 08 00 01 32 2B CC 77 BE 6B A4 BB 51 A0 69
BB BE 6A D7 F2 A0 00 00 00 56 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 53 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 40 3B 00
00 00 00 00 00 17 0A 05 02 07 C8 00 00 00 00 00
00 00 00 00 00 00 00 00 01 00 0E 00 04 3F 80 00
00 00 0A 00 00 3F 80 00 00 3A 0D 8E C9 00 00

 11
00 13 00 04 00 FA 00 09 00 16 00 0B 00 F3 00 E8
00 08 00 1B 00 1B 00 FA 00 EC 00 05 00 1B 00 1A
00 FC 00 EC 00 05 00 14 00 18 00 03 00 F8 00 0D
00 15 00 14 00 03 00 F4 00 05 00 11 00 10 00 F8
00 F0 00 11 00 1D 00 1E 00 F9 00 EA 00 06 00 1D
00 18 00 FE 00 EE 00 07 00 19 00 18 00 03 00 FA
00 0A 00 16 00 11 00

471 (Terminator) 0A

Here, in order to illustrate the contents of the logical blocks, the relevant parts (see explanations
next page) have been separated. In addition, to facilitate counting, the corresponding Byte Offset
numbering has been restarted each time a new block begins. The ASCII translation, only part of

which is shown, has been similarly split and highlighted, showing how its parts correspond to the
binary contents, highlighted in the same fashion.

4–7

On the preceding page… The first 10 bytes translate into ASCII and resemble the simple
beginning of a query response. These are followed by the string
“#9000000450”, the beginning of a binary block in which nine
ASCII integers are used to give the length of the block (450
bytes). The waveform itself starts immediately after this, at Byte
number 21. The very first byte is Byte #0, as it is for the first
byte in each block (at the head of each of the three Byte Offset
columns illustrated).

The first object is a DESCRIPTOR_NAME, a string of 16
characters with the value WAVEDESC.

Then, 16 bytes after the beginning of the descriptor (or at Byte
#37, counting from the very start and referring to the numbers in
the first Byte Offset column), we find the beginning of the next
string: the TEMPLATE_NAME with the value LECROY_2_2.

Several other parameters follow. The INSTRUMENT_NAME, 76
bytes from the descriptor start (Byte #97), is easily recognizable.
On the preceding line, at 38 bytes after the descriptor
(Byte #59), a four-byte-long integer gives the length of the
descriptor:

WAVE_DESCRIPTOR = 00 00 01 5A (hex) = 346.

At 60 bytes from the descriptor start (or Byte #81) we find
another four-byte integer giving the length of the data array:

WAVE_ARRAY_1 = 00 00 00 68 (hex) = 104.

And at 116 bytes after the descriptor (Byte #137), yet another
four-byte integer gives the number of data points:

WAVE_ARRAY_COUNT = 00 0000 34 (hex) = 52.

Now we know that the data will start at 346 bytes from the
descriptor’s beginning (Byte #367), and that each of the 52 data
points will be represented by two bytes. The waveform has a
total length of 346 + 104, which is the same as the ASCII string
indicated at the beginning of the block. The final 0A at Byte
#471 is the NL character associated with the message
terminator <NL><EOI>.

As the example was taken using an instrument with an eight-bit
ADC, we see the eight bits followed by a 0 byte for each data
point. However, for many other kinds of waveform this second
byte will not be zero and will contain significant information. The

4–8

Waveform Structure

data is coded in signed form (two’s complement) with values
ranging from − 32768 = 8000 (hex) to 32767 = 7FFF (hex). If we
had chosen to use the BYTE option for the data format the
values would have been signed integers in the range − 128 = 80
(hex) to 127 = 7F (hex). These ADC values are mapped to the
display grid in the following way:

Ø 0 is located on the grid’s center axis

Ø 127 (BYTE format) or 32767 (WORD format) is located at
the top of the grid

Ø − 128 (BYTE format) or − 32768 (WORD format) is located
at the bottom of the grid.

Interpreting
Vertical Data

Now that we know how to decipher the data it would be useful to
convert it to the appropriate measured values.

The vertical reading for each data point depends on the vertical
gain and the vertical offset given in the descriptor. For
acquisition waveforms this corresponds to the volts/div and
voltage offset selected after conversion for the data
representation being used. The template tells us that the vertical
gain and offset can be found at bytes 156 and 160 respective of
the descriptor start and that they are stored as floating point
numbers in the IEEE 32-bit format. An ASCII string giving the
vertical unit is to be found in VERTUNIT, Byte #196. The
vertical value is given by the relationship:

value = VERTICAL_GAIN × data −
VERTICAL_OFFSET

In the case of the data shown above we find:

VERTICAL_GAIN = 2.44141e− 07 from the floating
point number 3483 126f at byte
177

VERTICAL_OFFSET = 0.00054 from the floating point
number 3A0D 8EC9 at byte 181

VERTICAL_UNIT = V = volts from the string 5600 ...
at byte 217

and therefore:

4–9

since data[4] = FA00 = 64000 from the hexadecimal
word FA00 at byte 371. Overflows the
maximum. 16 bit value of 32767, so
must be a negative value. Using the
two’s complement conversion
64000− 216 = − 1536

value[4] = − 0.000915 V as stated in the inspect
command.

If the computer or the software available is not able to
understand the IEEE floating point values, a description is to be
found in the template.

The data values in a waveform may not all correspond to
measured points. FIRST_VALID_PNT and LAST_VALID_PNT
give the necessary information. The descriptor also records the
SPARSING_FACTOR, the FIRST_POINT, and the
SEGMENT_INDEX to aid interpretation if the options of the
WAVEFORM_SETUP command have been used.

For waveforms such as the extrema and the complex FFT there
will be two arrays — one after the other — for the two of the
result.

Calculating a Data
Point’s Horizontal
Position

Each vertical data value has a corresponding horizontal
position, usually measured in time or frequency units. Every
data value has a position, i, in the original waveform, with i = 0
corresponding to the first data point acquired. The descriptor
parameter HORUNIT gives a string with the name of the
horizontal unit.

Single-Sweep Waveforms x[i] = HORIZ_INTERVAL × i + HORIZ_OFFSET

For acquisition waveforms this time is from the trigger to the
data point in question. It will be different from acquisition to
acquisition since the HORIZ_OFFSET is measured for each
trigger.

In the case of the data shown above this means:

HORIZ_INTERVAL = 1e− 08 from the floating point
number 322b cc77 at byte 194

4–10

Waveform Structure

HORIZ_OFFSET = − 5.149e− 08 from the double
precision floating point number
be6b a4bb 51a0 69bb at byte 198

HORUNIT = S = seconds from the string 5300 ...
at byte 262.

4–11

This gives:

x[0] = − 5.149e− 08 S
x[1] = − 4.149e− 08 S.

WAVEFORM Commands Waveforms that have been read in their entirety with the
WAVEFORM? query can be sent back into the instrument using
WAVEFORM and other, related commands. Since the
descriptor contains all of the necessary information, care need
not be taken with any of the communication format parameters.
The instrument can learn all it needs to know from the

waveform.

When synthesizing waveforms for display or comparison, in
order to ensure that the descriptor is coherent, read out a
waveform of the appropriate size and then replace the data with
the desired values.

There are many ways to use WAVEFORM and related
commands to simplify or speed up work. Among them:

Ø Partial Waveform Readout: The WAVEFORM_SETUP
command allows specification of a short part of a waveform
for readout, as well as selection of a sparsing factor for
reading only every n’th data point.

Ø Byte Swapping: The COMM_ORDER command allows the
swapping of the two bytes of data presented in 16-bit word
format (can be in the descriptor or in the the data/time
arrays), when sending the data over the remote-control
ports. This allows easier data interpretation, depending on
the computer system used:

Ø Intel-based computers — the data should be sent with
the LSB first, and the command should be CORD LO.

Note: Waveforms can only be sent back to memory traces
(M1, M2, M3, M4). This means possibly removing or
changing the prefix (C1 or CHANNEL_1) in the response to
the WF? query. See the System Commands for examples.

4–12

Waveform Structure

Ø Motorola-based computers — the data should be sent
with the MSB first (CORD HI). This is the default at
power-up.

Ø Data Length, Block Format, and Encoding: The
COMM_FORMAT command gives control over these
parameters. If the extra precision of the lower order byte of
the standard data value is not needed, the BYTE option
allows a saving of a factor of two on the amount of data to
be transmitted or stored. If the computer being used is
unable to read binary data, the HEX option allows a
response form where the value of each byte is given by a
pair of hexadecimal digits.

Ø Data-Only Transfers: The COMM_HEADER OFF mode
enables a response to WF? DAT1 with the data only (the
C1:WF DAT1 will disappear).

If COMM_FORMAT OFF,BYTE,BIN has also been
specified, the response will be mere data bytes (the
#90000nnnnn will disappear).

4–13

High-Speed Waveform Transfer
Several important factors need to taken into account for
achieving maximum continuous-data-transfer rates from
server to client.

The single most important of these is the limiting of work done in
the computer. This effectively means avoiding writing data to
disk wherever possible, as well as minimizing operations such
as per-data-point computations and reducing the number of calls
to the IO system. Ways of doing this include:

Ø Reducing the number of points to be transferred and the
number of data bytes per point. The pulse parameter
capability and the processing functions can save a great
deal of computing and a lot of data transfer time if employed
creatively.

Ø Attempting to overlap waveform acquisition with waveform
transfer. The LSA1000 is capable of transferring an already
acquired or processed waveform after a new acquisition has
been started. If the instrument is obliged to wait for triggers,
overlapping waveform acquisition with waveform transfer
will considerably increase the total time that the instrument
will be able to acquire events (live time).

Example The desirable type of command is:

ARM; WAIT;C1:WF? to wait for the event, transfer
the data, and then start a new
acquisition.

This line can be “looped” in the program as soon as it has
finished reading the waveform.

4–1

4 Waveform Structure

5–1

5 Status Registers

Using Status Registers
A wide range of status registers allows the LSA1000’s
internal processing status to be determined quickly at any
time. These registers and the instrument’s status reporting
system are designed to comply with IEEE 488.2
recommendations. Following an overview, starting this
page, each of the registers and their roles are described.

Related functions are grouped together in common status
registers. Some, such as the Status Byte Register (STB) or the
Standard Event Status Register (ESR), are required by the IEEE
488.2 Standard. Other registers are device-specific, and include
the Command Error Register (CMR) and Execution Error
Register (EXR). Those commands associated with IEEE 488.2
mandatory status registers are preceded by an asterisk <*>.

Overview The Standard Event Status Bit (ESB) and the Internal Status
Change Bit (INB) in the Status Byte Register are summary bits
of the Standard Event Status Register (ESR) and the Internal
State Change Register (INR). The Message Available Bit (MAV)
is set whenever there are data bytes in the output queue. The
Value Adapted Bit (VAB) indicates that a parameter value was
adapted during a previous command interpretation (for
example, if the command “TDIV 2.5 US” is received, the
timebase is set to 2 µs/div along with the VAB bit).

The Master Summary Status bit (MSS) indicates a request for
service from the instrument. The MSS bit can only be set if one
or more of the other bits of STB are enabled with the Service
Request Enable Register (SRE).

All Enable registers (SRE, ESE and INE) are used to generate a
bit-wise AND with their associated status registers. The logical
OR of this operation is reported to the STB register. At power-
on, all Enable registers are zero, inhibiting any reporting to the
STB.

The Standard Event Status Register (ESR) primarily
summarizes errors, whereas the Internal State Change Register
(INR) reports internal changes to the instrument. Additional

5–2

Status Registers

details of errors reported by ESR can be obtained with the
queries “CMR?”, “DDR?” and “EXR?”.

5–3

Status Register Structure

5–4

Status Registers

The register structure contains one additional register, not shown
in the figure on the previous page. This is the Parallel Poll
Enable Register (PRE), which behaves exactly like the Service
Request Enable Register (SRE), but sets the “ist” bit (also not
shown in the figure), used in the Parallel Poll. The “ist” bit can
also be read with the “*IST?” query.

Example If an erroneous remote command — “TRIG_MAKE SINGLE”, for
example — is transmitted to the instrument, it rejects the
command and sets the Command Error Register (CMR) to the
value 1 (unrecognized command/query header). The non-zero
value of CMR is reported to Bit 5 of the Standard Event Status
Register (ESR), which is then set.

Nothing further occurs unless the corresponding Bit 5 of the
Standard Event Status Enable Register (ESE) is set (with the
command “*ESE 32”), enabling Bit 5 of ESR to be set for
reporting to the summary bit ESB of the Status Byte Register
(STB).

If setting of the ESB summary bit in STB is enabled, again
nothing occurs unless further reporting is enabled by setting the
corresponding bit in the Service Request Enable Register (with
the command “*SRE 32”). In this case, the generation of a non-
zero value of CMR ripples through to the Master Summary
Status bit (MSS), generating a Service Request (SRQ).

The value of CMR can be read and simultaneously reset to zero
at any time with the command “CMR?”. The occurrence of a
command error can also be detected by analyzing the response
to “*ESR?”. However, if several types of potential errors must be
surveyed, it is usually far more efficient to enable propagation of
the errors of interest into the STB with the enable registers ESE
and INE.

Summary A command error (CMR) sets Bit 5 of ESR if:

Ø Bit 5 of ESE is set, ESB of STB is also set, or
Ø Bit 5 of SRE is set, MSS/RQS of STB is also set and a

Service Request is generated.

5–5

Status Byte Register
(STB)

The Status Byte Register (STB) is the instrument’s central
reporting structure. The STB is composed of eight single-bit
summary messages (of which three are unused), which reflect
the current status of the associated data structures implemented
in the instrument:

Ø Bit 0 is the summary bit INB of the Internal State Change
Register. It is set if any of the bits of the INR are set,
provided they are enabled by the corresponding bit of the
INE register.

Ø Bit 2 is the Value Adapted bit, indicating that a parameter
value was adapted during a previous command
interpretation.

Ø Bit 4 is the Message Available (MAV) bit, indicating that the
interface output queue is not empty.

Ø Bit 5 is the summary bit ESB of the Standard Event Status
Register. It is set if any of the bits of the ESR are set,
provided they are enabled by the corresponding bit of the
ESE register.

Ø Bit 6 is either the Master Summary Status bit (MSS) or the
Request for Service bit (RQS), owing to the STB being able
to be read in two different ways. The command “*STB?”
reads and clears the STB in the query mode, in which case
Bit 6 is the MSS bit, and indicates whether the instrument
has any reason for requesting service.

The Status Byte Register can be read using the query “*STB?”.
The response represents the binary weighted sum of the register
bits. The register is cleared by “*STB?”, “ALST?”, “*CLS”, or
after the instrument has been powered up.

Another way of reading the STB is using the serial poll (see
“Instrument Polls”, Chapter 3). In this case, Bit 6 is the RQS bit,
indicating that the instrument has activated the SRQ line on the
GPIB. The serial poll only clears the RQS bit. Therefore, the
MSS bit of the STB (and any other bits which caused MSS to be
set) will stay set after a serial poll. These bits must be reset.

5–6

Status Registers

Standard Event
Status Register (ESR)

The Standard Event Status Register (ESR) is a 16-bit register
reflecting the occurrence of events. The ESR bit assignments
have been standardized by IEEE 488.2. Only the lower eight
bits are currently in use.

The ESR is read using the query “*ESR?”. The response is the
binary weighted sum of the register bits. The register is cleared with
an “*ESR?” or “ALST?” query, a “*CLS” command or after power-
on.

Example The response message “*ESR 160” indicates that a command
error occurred and that the ESR is being read for the first time
after power-on. The value 160 can be broken down into 128 (Bit
7) plus 32 (bit 5). See the table on the same page as the ESR
command description for the conditions corresponding to the bits
set.

The “Power ON” bit appears only on the first “*ESR?” query after
power-on because the query clears the register. This type of
command error can be determined by reading the Command
Error Status Register with the query “CMR?”. Note that it is not
necessary to read (nor simultaneously clear) this register in
order to set the CMR bit in the ESR on the next command error.

Standard Event Status
Enable Register (ESE)

The Standard Event Status Enable Register (ESE) allows one or
more events in the Standard Event Status Register to be reported
to the ESB summary bit in the STB.

The ESE is modified with the command “*ESE” and cleared with the
command “*ESE 0”, or after power-on. It is read with the query
“*ESE?”.

Example “*ESE 4” sets bit 2 (binary 4) of the ESE Register, enabling query
errors to be reported.

Service Request
Enable Register (SRE)

The Service Request Enable Register (SRE) specifies which
summary bit(s) in the Status Byte Register will bring about a service
request. The SRE consists of eight bits. Setting a bit in this register
allows the summary bit located at the same bit position in the Status
Byte Register to generate a service request, provided that the
associated event becomes true. Bit 6 (MSS) cannot be set and is
always reported as zero in response to the query “*SRE?”.

5–7

SRE is modified with the command “*SRE” and cleared with the
command “*SRE 0”, or after power-on. It may be read with the
query “*SRE?”.

Parallel Poll Enable
Register (PRE)

The Parallel Poll Enable Register (PRE) specifies which summary
bit(s) in the Status Byte Register will set the “ist” individual local
message. This register is quite similar to the Service Request
Enable Register (SRE), but is used to set the parallel poll “ist” bit
rather than MSS.

The value of the “ist” may also be read without a Parallel Poll via
the query “*IST?”. The response indicates whether or not the “ist”
message has been set (values are 1 or 0).

The PRE is modified with the command “*PRE” and cleared with
the command “*PRE 0”, or after power-on. It is read with the query
“*PRE?”. (See Chapter 3 “Instrument Polls”.)

Example “*PRE 5” sets bits 2 and 0 (decimal 4 and 1) of the Parallel Poll
Enable Register.

Internal State Change
Status Register (INR)

The Internal State Change Status Register (INR) reports the
completion of a number of internal operations (the events tracked
by this 16-bit-wide register are listed with the “INR?” query in the
System Commands section).

The INR is read using the query “INR?”. The response is the binary-
weighted sum of the register bits. The register is cleared with an
“INR?” or “ALST?” query, a “*CLS” command, or after power-on.

Internal State Change
Enable Register (INE)

The Internal State Change (INE) allows one or more events in the
Internal State Change Status Register to be reported to the INB
summary bit in the STB.

The INE is modified with the command “INE” and cleared with the
command “INE 0”, or after power-on. It is read with the query
“INE?”.

Command Error
Status Register (CMR)

The Command Error Status register contains the code of the last
command error detected by the instrument. Command error codes
are listed with the command “CMR?”.

The Command Error Status Register may be read using the query
“CMR?”. The response is the error code. The register is cleared with
a “CMR?” or “ALST?” query, a “*CLS” command, or after power-on.

5–8

Status Registers

Device Dependent
Error Status Register
(DDR)

The Device Dependent Error Status Register (DDR) indicates
the type of hardware errors affecting the instrument. Individual
bits in this register report specific hardware failures. They are
listed with the command “DDR?”.

The DDR is read using the “DDR?” query. The response is the
binary weighted sum of the error bits. The register is cleared
with a “DDR?” or “ALST?” query, a “*CLS” command, or after
power-on.

Execution Error Status
Register (EXR)

The Execution Error Status Register (EXR) contains the code of
the last execution error detected by the instrument. Execution
error codes are listed with the command “EXR?”.

The EXR is read using the “EXR?” query. The response is the error
code. The register is cleared with an “EXR?” or “ALST?” query, a
“*CLS” command, or after power-on.

5–1

5 Status Registers

SYSTEM COMMANDS

1

About These Commands & Queries
This section lists and describes the remote control
commands and queries recognized by the instrument. All
commands and queries can be executed in either local or
remote state. Where not included here, those for special
options can be found in the options’ dedicated Operator’s
Manuals.

The description for each command or query, with syntax and
other information, begins on a new page. The name (header) is
given in both long and short form at the top of the page, and the
subject is indicated as a command or query or both. Queries
perform actions such as obtaining information, and are
recognized by the question mark (?) following the header.

How They are Listed The descriptions are listed in alphabetical order according to their
long form. Thus the description of ATTENUATION, whose short
form is ATTN, is listed before that of AUTO_CALIBRATE, whose
short form is ACAL. The two special indexes at the beginning of this
section (pages 3 to 8) are designed as reference aids for quickly
finding commands and queries. One lists the commands and
queries in alphabetical order according to short form, while the other
groups them according to subsystem or category.

How They are Described In the descriptions themselves, a brief explanation of the function
performed is given. This is followed by a presentation of the formal
syntax, with the header given in Upper-and-Lower-Case
characters and the short form derived from it in ALL UPPER-CASE
characters. Where applicable, the syntax of the query is given with
the format of its response.

A short example illustrating a typical use is also presented.

When Can They be Used? All the commands and queries listed here can be used with the
standard LSA1000, except when a particular option is required. The
raised hand symbol G indicates a note on availability for a particular
option or function.

2

Command Notation The following notation is used in the commands:

<< >> Angular brackets enclose words that are used as
placeholders, of which there are two types: the header path
and the data parameter of a command.

:: == A colon followed by an equals sign separates a placeholder
from the description of the type and range of values that
may be used in a command instead of the placeholder.

{{ }} Braces enclose a list of choices, one of which one must be
made.

[[]] Square brackets enclose optional items.

…… An ellipsis indicates that the items both to its left and right
may be repeated a number of times.

As an example, consider the syntax notation for the command to
set the vertical input sensitivity:

<channel> : VOLT_DIV <v_gain>
<channel> : = {C1, C2}
<v_gain> : = 5.0 mV to 2.5 V

The first line shows the formal appearance of the command,
with <channel> denoting the placeholder for the header path and
<v_gain> the placeholder for the data parameter specifying the
desired vertical gain value. The second line indicates that either
C1 or C2 must be chosen for the header path. And the third
explains that the actual vertical gain can be set to any value
between 5 mV and 2.5 V.

Refer to Chapter 2 for an overview of the command functions and
notation used.

Command Execution Before attempting to execute a command or query, the LSA1000
scans it to verify its correctness and that sufficient information is
given to perform the requested action.

Since interrogating the LSA1000 does not change its internal state,
it may be queried at any time. The only exceptions to this are the
queries *CAL? and *TST?, which both recalibrate the instrument.

3

Commands & Queries Tabled By Short Form
Page
No.

Shor
t

Form
Long Form

Subsystem
(category) What the Command/Query

Does
12 ACAL AUTO_CALIBRATE MISCELLANEOUS Enables or disables automatic calibration.
10 ALST? ALL_STATUS? STATUS Reads and clears the contents of all status registers.
9 AOUT ACQ_OUT ACQUISITION Sets the mode of the ACQ OUT signal
11 ARM ARM_ACQUISITION ACQUISITION Changes acquisition state from “stopped” to “single”.
13 BWL BANDWIDTH_LIMIT ACQUISITION Enables/disables the bandwidth-limiting low-pass filter.
14 *CAL? *CAL? MISCELLANEOUS Performs complete internal calibration of the instrument.
27 CFMT COMM_FORMAT COMMUNICATION Selects the format for sending waveform data.
29 CHDR COMM_HEADER COMMUNICATION Controls formatting of query responses.
30 CHLP COMM_HELP COMMUNICATION Controls operational level of the RC Assistant.
31 CHL? COMM_HELP_LOG? COMMUNICATION Returns the contents of the RC Assistant log.
17 CLM CLEAR_MEMORY FUNCTION Clears the specified memory.
19 *CLS *CLS STATUS Clears all status data registers.
18 CLSW CLEAR_SWEEPS FUNCTION Restarts the cumulative processing functions.
15 CMGN? CAL_MARGIN? MISCELLANEOUS Checks oil light margins and names margins and lights.
20 CMR? CMR? STATUS Reads and clears the Command error Register (CMR).
22 COLR COLOR DISPLAY Selects color of individual on-screen objects
25 COMB COMBINE_CHANNELS ACQUISITION Controls the channel interleaving function.
26 COMS COMBINE_SOURCE ACQUISITION Determines the input channel used for interleaving.
32 CONET COMM_NET COMMUNICATION Specifies the LSA1000’s network address.
33 CORD COMM_ORDER COMMUNICATION Controls the byte order of waveform data transfers.
34 CRMS CURSOR_MEASURE CURSOR Specifies the type of cursor/parameter measurement.
37 CRST CURSOR_SET CURSOR Allows positioning of any one of eight cursors.
39 CRVA? CURSOR_VALUE? CURSOR Returns trace values measured by specified cursors.
24 CSCH COLOR_SCHEME DISPLAY Selects the display color scheme.
16 CSTS? CAL_STATUS? MISCELLANEOUS Checks internal control margins, gives calibration status.
41 DATE DATE MISCELLANEOUS Changes the date/time of the internal real-time clock.
42 DDR? DDR? STATUS Reads, clears the Device Dependent Register (DDR).
43 DEF DEFINE FUNCTION Specifies math expression for function evaluation.
49 DELF DELETE_FILE MASS STORAGE Deletes files from mass storage.
50 DIR DIRECTORY MASS STORAGE Creates and deletes file directories.
52 DISP DISPLAY DISPLAY Controls the display screen..
40 DPNT DATA_POINTS DISPLAY Controls bold/single pixel display of sample points.
53 DTJN DOT_JOIN DISPLAY Controls the interpolation lines between data points.
54 DZOM DUAL_ZOOM DISPLAY Sets horizontal magnification and positioning.
55 *ESE *ESE STATUS Sets the Standard Event Status Enable register(ESE).
56 *ESR? *ESR? STATUS Reads, clears the Event Status Register (ESR).
59 EXR? EXR? STATUS Reads, clears the EXecution error Register (EXR).
62 FCR FIND_CTR_RANGE FUNCTION Sets histogram center and width.
63 FCRD FORMAT_CARD MASS STORAGE Formats a memory card.
65 FFLP FORMAT_FLOPPY MASS STORAGE Formats a floppy disk.
67 FHDD FORMAT_HDD MASS STORAGE Formats a removable hard disk.
61 FLNM FILENAME MASS STORAGE Changes default filenames.
70 FRST FUNCTION_RESET FUNCTION Resets a waveform-processing function.

4

Page
No.

Shor
t

Form
Long Form

Subsystem
(category) What the Command/Query

Does
69 FSCR FULL_SCREEN DISPLAY Selects magnified view format for the grid.
71 GMOD GAIN_MODE ACQUISITION Specifies the gain mode (gain range) of the front end.
72 GBWL GLOBAL_BWL ACQUISITION Enables/disables global bandwidth-limiting.
73 GRID GRID DISPLAY Specifies single-, dual- or quad-mode grid display.
74 HMAG HOR_MAGNIFY DISPLAY Horizontally expands the selected math trace.
75 HPOS HOR_POSITION DISPLAY Horizontally positions intensified zone’s center.
77 *IDN? *IDN? MISCELLANEOUS For identification purposes.
78 INE INE STATUS Sets the Internal state change Enable register (INE).
79 INR? INR? STATUS Reads, clears INternal state change Register (INR).
82 INSP? INSPECT? WAVEFORM TRANS. Allows acquired waveform parts to be read.
81 INTS INTENSITY DISPLAY Sets the grid or trace/text intensity level.
84 *IST? *IST? STATUS Reads the current state of the IEEE 488.
85 MSIZ MEMORY_SIZE ACQUISITION Selects max. memory length.
86 MZOM MULTI_ZOOM DISPLAY Sets horizontal magnification and positioning.
87 OFST OFFSET ACQUISITION Allows output channel vertical offset adjustment.
88 *OPC *OPC STATUS Sets the OPC bit in the Event Status Register (ESR).
89 *OPT? *OPT? MISCELLANEOUS Identifies LSA1000 options.
91 PACL PARAMETER_CLR CURSOR Clears all current parameters in Custom, Pass/Fail.
92 PACU PARAMETER_CUSTOM CURSOR Controls parameters with customizable qualifiers.
96 PADL PARAMETER_DELETE CURSOR Deletes a specified parameter in Custom, Pass/Fail.
97 PAST? PARAMETER_STATISTICS? CURSOR Returns current statistics parameter values.
98 PAVA? PARAMETER_VALUE? CURSOR Returns current parameter, mask test values.
108 PECS PER_CURSOR_SET CURSOR Positions independent cursors.
110 PECV? PER_CURSOR_VALUE? CURSOR Returns values measured by cursors.
113 PELT PERSIST_LAST DISPLAY Shows the last trace drawn in a persistence data

map.
111 PERS PERSIST DISPLAY Enables or disables the persistence display mode.
112 PECL PERSIST_COLOR DISPLAY Controls color rendering method of persistence

traces.
114 PESA PERSIST_SAT DISPLAY Sets the color saturation level in persistence.
115 PESU PERSIST_SETUP DISPLAY Selects display persistence duration.
101 PFCO PASS_FAIL_CONDITION CURSOR Adds a Pass/Fail test condition or custom parameter.
103 PFCT PASS_FAIL_COUNTER CURSOR Resets the Pass/Fail acquisition counters.
104 PFDO PASS_FAIL_DO CURSOR Defines desired outcome, actions after Pass/Fail test.
106 PFMS PASS_FAIL_MASK CURSOR Generates tolerance mask on a trace and stores it.
107 PFST? PASS_FAIL_STATUS? CURSOR Returns the Pass/Fail test for a given line number.
116 *PRE *PRE STATUS Sets the PaRallel poll Enable register (PRE).
118 RCLK REFERENCE_CLOCK ACQUISITION Selects the system clock source.
117 REC RECALL WAVEFORM TRANS. Recalls a file from mass storage to internal memory.
119 *RST *RST SAVE/RECALL The *RST command initiates a device reset.
120 SEQ SEQUENCE ACQUISITION Sets the conditions for the sequence mode acquisition.
122 *SRE *SRE STATUS Sets the Service Request Enable register (SRE).
123 *STB? *STB? STATUS Reads the contents of the IEEE 488.
126 STO STORE WAVEFORM TRANS. Stores a trace in internal memory or mass storage.
125 STOP STOP ACQUISITION Immediately stops signal acquisition.
127 STST STORE_SETUP WAVEFORM TRANS. Controls the way in which traces are stored.
128 STTM STORE_TEMPLATE WAVEFORM TRANS. Stores the waveform template to mass storage.

The Commands and Queries

5

Page
No.

Shor
t

Form
Long Form

Subsystem
(category) What the Command/Query

Does
130 TDIV TIME_DIV ACQUISITION Modifies the timebase setting.
129 TMPL? TEMPLATE? WAVEFORM TRANS. Produces a complete waveform template copy.
131 TRA TRACE DISPLAY Enables or disables the display of a trace.
133 TRDL TRIG_DELAY ACQUISITION Sets the time at which the trigger is to occur.
132 *TRG *TRG ACQUISITION Executes an ARM command.
134 TRLV TRIG_LEVEL ACQUISITION Adjusts the trigger level of the specified trigger source.
135 TRMD TRIG_MODE ACQUISITION Specifies the trigger mode.
136 TRSE TRIG_SELECT ACQUISITION Selects the condition that will trigger acquisition.
137 TRSL TRIG_SLOPE ACQUISITION Sets the trigger slope of the specified trigger source.
138 TRWI TRIG_WINDOW ACQUISITION Sets window amplitude on current Edge trigger source.
139 *TST? *TST? MISCELLANEOUS Performs an internal self-test.
142 VDIV VOLT_DIV ACQUISITION Sets the vertical sensitivity.
140 VMAG VERT_MAGNIFY DISPLAY Vertically expands the specified trace.
141 VPOS VERT_POSITION DISPLAY Adjusts the vertical position of the specified trace.
143 VRNG VOLT_RANGE ACQUISITION Sets the full-scale range in volts.
144 *WAI *WAI STATUS Required by the IEEE 488.
145 WAIT WAIT ACQUISITION Prevents new analysis until current is completed.
146 WF WAVEFORM WAVEFORM TRANS. Transfers a waveform from controller to LSA1000.
148 WFSU WAVEFORM_SETUP WAVEFORM TRANS. Specifies amount of waveform data to go to controller.
150 WFTX WAVEFORM_TEXT WAVEFORM TRANS. Documents acquisition conditions.
151 XYAS? XY_ASSIGN? DISPLAY Returns traces currently assigned to the XY display.
152 XYCO XY_CURSOR_ORIGIN CURSOR Sets origin position of absolute cursor measurements.
153 XYCS XY_CURSOR_SET CURSOR Allows positioning of XY voltage cursors.
155 XYCV? XY_CURSOR_VALUE? CURSOR Returns the current values of the X vs Y cursors.
157 XYDS XY_DISPLAY DISPLAY Enables or disables the XY display mode.
158 XYSA XY_SATURATION DISPLAY Sets persistence color saturation level in XY display.

6

Commands & Queries Tabled By Subsystem
ACQUISITION — Controll ing Waveform Acquisition

9 AOUT ACQ_OUT Sets the mode of the ACQ OUT signal.
11 ARM ARM_ACQUISITION Changes acquisition state from “stopped” to “single”.
13 BWL BANDWIDTH_LIMIT Enables or disables the bandwidth-limiting low-pass filter.
26 COMS COMBINE_SOURCE Determines the input channel used for interleaving.
25 COMB COMBINE_CHANNELS Controls the acquisition system’s channel-interleaving function.
72 GBWL GLOBAL_BWL Enables/disables global bandwidth-limiting.
71 GMOD GAIN_MODE Specifies the gain mode (gain range) of the front end.
85 MSIZ MEMORY_SIZE Allows selection of maximum memory length (M- and L-models only).
87 OFST OFFSET Allows vertical offset adjustment of the specified input channel.
118 RCLK REFERENCE_CLOCK Selects the system clock source.
120 SEQ SEQUENCE Sets the conditions for the sequence mode acquisition.
125 STOP STOP Immediately stops signal acquisition.
130 TDIV TIME_DIV Modifies the timebase setting.
133 TRDL TRIG_DELAY Sets the time at which the trigger is to occur.
132 *TRG *TRG Executes an ARM command.
134 TRLV TRIG_LEVEL Adjusts the level of the specified trigger source.
135 TRMD TRIG_MODE Specifies Trigger mode.
136 TRSE TRIG_SELECT Selects the condition that will trigger acquisition.
137 TRSL TRIG_SLOPE Sets the slope of the specified trigger source.
138 TRWI TRIG_WINDOW Sets the window amplitude in volts on the current Edge trigger source.
142 VDIV VOLT_DIV Sets the vertical sensitivity in volts/div.
143 VRNG VOLT_RANGE Sets the full-scale range in volts.
145 WAIT WAIT Prevents new command analysis until current acquisition completion.

COMMUNICATION — Setting Communication Characteristics
27 CFMT COMM_FORMAT Selects the format to be used for sending waveform data.
29 CHDR COMM_HEADER Controls formatting of query responses.
30 CHLP COMM_HELP Controls operational level of the RC Assistant.
31 CHL? COMM_HELP_LOG? Returns the contents of the RC Assistant log.
32 CONET COMM_NET Specifies the LSA1000’s network address.
33 CORD COMM_ORDER Controls the byte order of waveform data transfers.

CURSOR — Performing Measurements
34 CRMS CURSOR_MEASURE Specifies the type of cursor or parameter measurement for display.
37 CRST? CURSOR_SET? Allows positioning of any one of eight cursors.
39 CRVA? CURSOR_VALUE? Returns the values measured by the specified cursors for a given trace.
91 PACL PARAMETER_CLR Clears all current parameters in Custom and Pass/Fail modes.
92 PACU PARAMETER_CUSTOM Controls parameters with customizable qualifiers.
96 PADL PARAMETER_DELETE Deletes a specified parameter in Custom and Pass/Fail modes.
97 PAST? PARAMETER_STATISTICS? Returns current statistics values for the specified pulse parameter.
98 PAVA? PARAMETER_VALUE? Returns current value(s) of parameter(s) and mask tests.
108 PECS PER_CURSOR_SET Allows positioning of any one of six independent cursors.
110 PECV? PER_CURSOR_VALUE? Returns the values measured by specified cursors for a given trace.
101 PFCO PASS_FAIL_CONDITION Adds a Pass/Fail test condition or custom parameter to display.

The Commands and Queries

7

103 PFCT PASS_FAIL_COUNTER Resets the Pass/Fail acquisition counters.
104 PFDO PASS_FAIL_DO Defines the desired outcome and actions following a Pass/Fail test.
106 PFMS PASS_FAIL_MASK Generates a tolerance mask around a chosen trace and stores it.
107 PFST? PASS_FAIL_STATUS? Returns the Pass/Fail test for a given line number.
152 XYCO XY_CURSOR_ORIGIN Sets position of origin for absolute cursor measurements on XY display.
153 XYCS XY_CURSOR_SET Allows positioning of any one of six independent XY voltage cursors.
155 XYCV? XY_CURSOR_VALUE? Returns current values of X vs Y cursors.

DISPLAY — Displaying Waveforms
22 COLR COLOR Selects color of individual objects: traces, grids or cursors.
24 CSCH COLOR_SCHEME Selects the display color scheme..
40 DPNT DATA_POINTS Controls display of sample points in single display pixels or bold.
52 DISP DISPLAY Controls the oscilloscope display screen.
53 DTJN DOT_JOIN Controls the interpolation lines between data points.
54 DZOM DUAL_ZOOM Sets horiz. magnification and positioning for all expanded traces.
69 FSCR FULL_SCREEN Selects magnified view format for the grid.
73 GRID GRID Specifies grid display in single, dual or quad mode.
74 HMAG HOR_MAGNIFY Horizontally expands selected expansion trace.
75 HPOS HOR_POSITION Horizontally positions intensified zone’s center on source trace.
81 INTS INTENSITY Sets grid or trace/text intensity level.
86 MZOM MULTI_ZOOM Sets horiz. magnification and positioning for all expanded traces.
111 PERS PERSIST Enables or disables the Persistence Display mode.
112 PECL PERSIST_COLOR Controls color rendering method of persistence traces.
113 PELT PERSIST_LAST Shows the last trace drawn in a persistence data map.
114 PESA PERSIST_SAT Sets the color saturation level in persistence.
115 PESU PERSIST_SETUP Selects display persistence duration in Persistence mode.
131 TRA TRACE Enables or disables the display of a trace.
140 VMAG VERT_MAGNIFY Vertically expands the specified trace.
141 VPOS VERT_POSITION Adjusts the vertical position of the specified trace.
151 XYAS? XY_ASSIGN? Returns the traces currently assigned to the XY display.
157 XYDS XY_DISPLAY Enables or disables the XY display mode.
158 XYSA XY_SATURATION Sets persistence color saturation level in XY display.

FUNCTION — Performing Waveform Mathematical Operations
17 CLM CLEAR_MEMORY Clears the specified memory.
18 CLSW CLEAR_SWEEPS Restarts the cumulative processing functions.
43 DEF DEFINE Specifies the mathematical expression to be evaluated by a function.
62 FCR FIND_CONTROL_RANGE Sets histogram center and width.
70 FRST FUNCTION_RESET Resets a waveform processing function.

MASS STORAGE — Creating and Deleting File Directories
49 DELF DELETE_FILE Deletes files from mass storage.
50 DIR DIRECTORY Creates and deletes file directories.
63 FCRD FORMAT_CARD Formats a memory card.
65 FFLP FORMAT_FLOPPY Formats a floppy disk.
67 FHDD FORMAT_HDD Formats a removable hard disk.
61 FLNM FILENAME Changes default filenames.

8

MISCELLANEOUS — Calibration and Testing
12 ACAL AUTO_CALIBRATE Enables or disables automatic calibration.
14 *CAL? *CAL? Performs a complete internal calibration of the instrument.
15 CMGN? CAL_MARGIN? Checks oil light margins and names margins and lights.
16 CSTS? CAL_STATUS? Checks internal control margins, gives last calibration status.
41 DATE DATE Changes the date/time of the LSA1000’s internal real-time clock.
77 *IDN? *IDN? Used for identification purposes.
89 *OPT? *OPT? Identifies LSA1000 options.
139 *TST? *TST? Performs an internal self-test.

SAVE / RECALL SETUP — Preserving and Restoring Settings
119 *RST *RST The *RST command initiates a device reset.

STATUS — Obtaining Status Information and Setting Up Service
Requests

10 ALST? ALL_STATUS? Reads and clears the contents of all (but one) of the status registers.
19 *CLS *CLS Clears all the status data registers.
20 CMR? CMR? Reads and clears the contents of the CoMmand error Register (CMR).
42 DDR? DDR? Reads and clears the Device-Dependent error Register (DDR).
55 *ESE *ESE Sets the standard Event Status Enable (ESE) register.
56 *ESR? *ESR? Reads and clears the Event Status Register (ESR).
59 EXR? EXR? Reads and clears the EXecution error Register (EXR).
78 INE INE Sets the INternal state change Enable register (INE).
79 INR? INR? Reads and clears the INternal state change Register (INR).
84 *IST? *IST? Individual STatus reads the current state of IEEE 488.
88 *OPC *OPC Sets to true the OPC bit (0) in the Event Status Register (ESR).
116 *PRE *PRE Sets the PaRallel poll Enable register (PRE).
122 *SRE *SRE Sets the Service Request Enable register (SRE).
123 *STB? *STB? Reads the contents of IEEE 488.
144 *WAI *WAI WAIt to continue — required by IEEE 488.

WAVEFORM TRANSFER — Preserving and Restoring Waveforms
82 INSP? INSPECT? Allows acquired waveform parts to be read.
117 REC RECALL Recalls a waveform file from mass storage to internal memories M1–4.
126 STO STORE Stores a trace in one of the internal memories M1–4 or mass storage.
127 STST STORE_SETUP Controls the way in which traces are stored.
128 STTM STORE_TEMPLATE Stores the waveform template in a mass-storage device.
129 TMPL? TEMPLATE? Produces a copy of the template describing a complete waveform.
146 WF WAVEFORM Transfers a waveform from the controller to the LSA1000.
148 WFSU WAVEFORM_SETUP Specifies amount of waveform data for transmission to controller.
150 WFTX WAVEFORM_TEXT Documents the conditions under which a waveform has been acquired.

The Commands and Queries

9

ACQUISITION ACQ_OUT, AOUT
Command/Query

DESCRIPTION The ACQ_OUT command specifies the operation of the ACQ OUT
signal. In STD mode, the ACQ OUT signal is a hardware-generated
pulse that occurs at the end of every acquisition segment. In SEQ
mode, behavior is identical to STD except in sequence mode. In
sequence mode, the pulse is software-generated at the end of a
sequence acquisition only (i.e. after the acquisition of the last
segment only).

COMMAND SYNTAX Acq_OUT <mode>

<mode> := { STD, SEQ }

QUERY SYNTAX Acq_OUT?

RESPONSE FORMAT Acq_OUT <mode>

 The Commands and Queries

10

STATUS ALL_STATUS?, ALST?
Query

DESCRIPTION The ALL_STATUS? query reads and clears the contents of all
status registers: STB, ESR, INR, DDR, CMR, EXR and URR
except for the MAV bit (bit 6) of the STB register. For an
interpretation of the contents of each register, refer to the
appropriate status register.

The ALL_STATUS? query is useful in a complete overview of
the state of the instrument.

QUERY SYNTAX ALl_STatus?

RESPONSE FORMAT ALl_STatus STB,<value>,ESR,<value>,INR,<value>,
DDR,<value>,CMR,<value>,EXR,<value>,URR,<value>

<value> : = 0 to 65535

EXAMPLE The following instruction reads the contents of all the status
registers:
ALST?

Response message:
ALST TB,000000,ESR,000052,INR,000005,DDR,000000,
CMR,000004,EXR,000024,URR,000000

RELATED COMMANDS *CLS, CMR?, DDR?, *ESR?, EXR?, *STB?, URR?

The Commands and Queries

11

ACQUISITION ARM_ACQUISITION, ARM
Command

DESCRIPTION The ARM_ACQUISITION command enables the signal
acquisition process by changing the acquisition state (trigger
mode) from “stopped” to “single”.

COMMAND SYNTAX ARM_acquisition

EXAMPLE The following command enables signal acquisition:

ARM

RELATED COMMANDS STOP, *TRG, TRIG_MODE, WAIT

 The Commands and Queries

12

MISCELLANEOUS AUTO_CALIBRATE, ACAL
Command/Query

DESCRIPTION The AUTO_CALIBRATE command is used to enable or disable
the automatic calibration of the instrument. At power-up, auto-
calibration is turned ON, i.e. all input channels are periodically
calibrated for the current input amplifier and timebase settings.

The automatic calibration may be disabled by issuing the
command ACAL OFF. Whenever it is convenient, a *CAL?
query may be issued to fully calibrate the LSA1000. When the
LSA1000 is returned to local control, the periodic calibrations
are resumed.

The response to the AUTO_CALIBRATE? query indicates
whether auto-calibration is enabled.

COMMAND SYNTAX Auto_CALibrate <state>
<state> : = {ON, OFF}

QUERY SYNTAX Auto_CALibrate?

RESPONSE FORMAT Auto_CALibrate <state>

EXAMPLE The following instruction disables auto-calibration:

ACAL OFF

RELATED COMMANDS *CAL?, CAL_STATUS

The Commands and Queries

13

ACQUISITION BANDWIDTH_LIMIT, BWL
Command/Query

DESCRIPTION BANDWIDTH_LIMIT enables or disables the bandwidth-limiting
low-pass filter. When Global_BWL (see page 72) is on the BWL
command applies to all channels; when off, the command is
used to set the bandwidth individually for each channel. The
response to the BANDWIDTH_LIMIT? Query indicates whether
the bandwidth filters are on or off.

COMMAND SYNTAX BandWidth_Limit <mode>

Or, alternatively, to choose the bandwidth limit of an individual
channel or channels when Global_BWL is off:

BandWidth_Limit <channel>,<mode>[,<channel>,<mode>
[,<channel>,<mode>[,<channel>,<mode>]]]

<mode> : = {OFF, ON, 200MHZ}
<channel> : = {C1, C2}

QUERY SYNTAX BandWidth_Limit?

RESPONSE FORMAT When Global_BWL is on, or if Global_BWL is off and all
channels have the same bandwidth limit, the response is:

BandWidth_Limit <mode>

Or, alternatively, if at least two channels have their bandwidth limit
filters set differently from one another, the response is:

BandWidth_Limit <channel>,<mode>[,<channel>,<mode>
[,<channel>,<mode>[,<channel>,<mode>]]]

EXAMPLE The following turns on the bandwidth filter for all channels:

BWL ON

The following turns the bandwidth filter on for Channel 1 only
(the first instruction turns off Global_BWL):

GBWL OFF

BWL C1,ON

RELATED COMMANDS GLOBAL_BWL

 The Commands and Queries

14

MISCELLANEOUS *CAL?
Query

DESCRIPTION The *CAL? query cause the LSA1000 to perform an internal self-
calibration and generates a response that indicates whether or
not the instrument completed the calibration without error. This
internal calibration sequence is the same as that which occurs at
power-up. At the end of the calibration, after the response has
indicated how the calibration terminated, the instrument returns
to the state it was in just prior to the calibration cycle.

QUERY SYNTAX *CAL?

RESPONSE FORMAT *CAL <diagnostics>
<diagnostics> : = 0 or other
0 = Calibration successful

EXAMPLE The following instruction forces a self-calibration:

*CAL?

Response message (if no failure): *CAL 0

RELATED COMMANDS AUTO_CALIBRATE, CAL_STATUS

The *CAL? query performs an internal calibration and returns an
integer denoting any errors.

Bit Value Description
0 1 C1 failure
1 2 C2 failure
2 4 C3 failure
3 8 C4 failure
4 16 TDC failure
5 32 Trigger failure
6 64 Other failure
7 128 reserved

The Commands and Queries

15

MISCELLANEOUS CAL_MARGIN?, CMGN?
Query

DESCRIPTION The CAL_MARGIN? query checks the margins on all the device-
specific internal adjustments and responds with a list of all the
names and margins. Margin values close to 0% or 100% are bad.
Ideal margin values are around 50%.

QUERY SYNTAX Cal_MarGiN [<tag>, <margin>[, <tag>, <margin>[,…]]]
<margin>: = <percentage in range 0–100>
<tag>:= tag string denoting what the margin is for.

EXAMPLE The following instruction reads all of the margins:
The query and response
CMGN?
CMGN C1_A_DELAY,50.2 PCT,C1_A_GAIN_MATCH,50.2
PCT,C1_A_OFST_MATCH,50.2 PCT,C1_B_DELAY,50.2
PCT,C1_B_GAIN_MATCH,50.2 PCT,C1_B_OFST_MATCH,50.2
PCT,C1_GAIN,50 PCT,C1_OFFSET,50
PCT,C1_TRIG_THRESH1,50.2 PCT,C1_TRIG_THRESH2,50.2
PCT,C2_A_DELAY,50.2 PCT,C2_A_GAIN_MATCH,50.2
PCT,C2_A_OFST_MATCH,50.2 PCT,C2_B_DELAY,50.2
PCT,C2_B_GAIN_MATCH,50.2 PCT,C2_B_OFST_MATCH,50.2
PCT,C2_GAIN,50 PCT,C2_OFFSET,50
PCT,C2_TRIG_THRESH1,50.2 PCT,C2_TRIG_THRESH2,50.2
PCT,PS_+12_VCO,40.4 PCT,PS_+3.3,47.3 PCT,PS_+5VCO,50
PCT,PS__+5V_FE,44.9 PCT,P_+6V,62.8 PCT,PS_-2V,50.7
PCT,PS_-3.8VCO,48.9 PCT,PS_-4.5V_ADC,48 PCT,PS_-
5V_FEC,42.9 PCT,PS_-5V_FED,46.9 PCT,PS_-5V_MSH,38.8
PCT,PS_-6VC,47.8 PCT,PS_-6VD,43.7 PCT,PS_-VT,51.7
PCT,PS_12V_FAN,53.6 PCT,PS_2V5,44.4 PCT,PS_3V3,51.3
PCT,PS_VCC,37.8 PCT,PS_VEE,35.8 PCT

RELATED COMMANDS AUTO_CALIBRATE, *CAL?

 The Commands and Queries

16

MISCELLANEOUS CAL_STATUS?, CSTS?
Query

DESCRIPTION The CAL_STATUS? query checks the margins on all the internal
controls and the status of the most recent calibration and returns an
integer denoting any errors or warnings.

Bit Value Description
0–7 0..255 Same as for *CAL? query
8 256 Calibration recommended. This bit is set when automatic calibrations are disabled

(using the AUTO_CALIBRATE command) and a temperature change or time period has
elapsed that would ordinarily trigger an automatic calibration.

9 512 Margin violations detected. This bit is set when one or more of the internal controls used
to maintain the calibration of the unit is currently within 10% of the end of its adjustment
range. A margin violation may accompany a calibration failure (as reported in bits 0–7
or by the *CAL? command) but does not by itself necessarily indicate an internal
hardware failure or that the unit is not able to perform to specifications. A margin
violation not accompanied by a calibration failure indicates that the calibration passed
conditionally. The unit should still function, but the warning indicates that some internal
adjustments are near the end of their range. The criteria for a margin violation are
intentionally more strict than the criteria for reporting a calibration failure. Thus, even
properly functioning hardware may occasionally trigger a margin violation either due to
an anomalous reading during a calibration or due to factors such as temperature
transients (such as while the unit is warming up after power on). Frequent and persistent
margin violations can be caused by extreme operating conditions (for example, extreme
temperature), drift in the hardware that is exceeding the unit’s ability to compensate
internally, or some other hardware failure.

QUERY SYNTAX Cal_STatuS?

RESPONSE FORMAT Cal_STatuS <diagnostics>
<diagnostics>: = 0 to 1023
0 = Calibration status OK.

EXAMPLE The following instruction reads the calibration status:
CSTS?
Response message
CSTS 256
Indicates that a calibration is recommended

RELATED COMMANDS AUTO_CALIBRATE, CAL?, CAL_MARGIN?

The Commands and Queries

17

FUNCTION CLEAR_MEMORY, CLM
Command

DESCRIPTION The CLEAR_MEMORY command clears the specified memory.
Data previously stored in this memory are erased and memory
space is returned to the free memory pool.

COMMAND SYNTAX CLear_Memory < memory>

<memory> : = {M1, M2, M3, M4}

EXAMPLE The following command clears the memory M2.

CLM M2

RELATED COMMANDS STORE

 The Commands and Queries

18

FUNCTION CLEAR_SWEEPS, CLSW
Command

DESCRIPTION The CLEAR_SWEEPS command restarts the cumulative
processing functions: summed or continuous average, extrema,
FFT power average, histogram, pulse parameter statistics,
pass/fail counters, and persistence.

COMMAND SYNTAX CLear SWeeps

EXAMPLE The following example will restart the cumulative processing:

CLSW

RELATED COMMANDS DEFINE, INR

The Commands and Queries

19

STATUS *CLS
Command

DESCRIPTION The *CLS command clears all the status data registers.

COMMAND SYNTAX *CLS

EXAMPLE The following command causes all the status data registers to
be cleared:

*CLS

RELATED COMMANDS ALL_STATUS, CMR, DDR, *ESR, EXR, *STB, URR

 The Commands and Queries

20

STATUS CMR?
Query

DESCRIPTION The CMR? query reads and clears the contents of the CoMmand
error Register (CMR) — see table next page — which specifies
the last syntax error type detected by the instrument.

QUERY SYNTAX CMR?

RESPONSE FORMAT CMR <value>
<value> : = 0 to 13

EXAMPLE The following instruction reads the contents of the CMR register:

CMR?

Response message:
CMR 0

RELATED COMMANDS ALL_STATUS?, *CLS

The Commands and Queries

21

ADDITIONAL INFORMATION

Command Error Status Register Structure (CMR)
Value Description

1 Unrecognized command/query header

2 Illegal header path

3 Illegal number

4 Illegal number suffix

5 Unrecognized keyword

6 String error

7 GET embedded in another message

10 Arbitrary data block expected

11 Non-digit character in byte count field of arbitrary data block

12 EOI detected during definite length data block transfer

13 Extra bytes detected during definite length data block transfer

 The Commands and Queries

22

DISPLAY COLOR, COLR
Command/Query

DESCRIPTION The COLOR command is used to select the color of an individual
display object such as text, trace, grid or cursor.

The response to the COLOR? query indicates the color assigned
to each display object, whether or not it is currently displayed.

Note: This command is only effective if the color scheme
(CSCH) is chosen from U1… U4.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX COLoR <object, color>[,...<object>,<color>]

<object> : = {BACKGND, C1, C2, C3, C4, TA, TB, TC, TD, GRID,
TEXT, CURSOR, NEUTRAL, WARNING},

<color> : = { WHITE, CYAN, YELLOW, GREEN, MAGENTA, BLUE, RED,
LTGRAY, GRAY, SLGRAY, CHGRAY, DKCYAN, CREAM, SAND, AMBER,
OLIVE, LTGEEN, JADE, LMGREEN, APGREEN, EMGREEN, GRGREEN,
OCSPRAY, ICEBLUE, PASTBLUE, PALEBLUE, SKYBLUE,
ROYLBLUE, DEEPBLUE, NAVY, PLUM, PURPLE, AMETHYST,
FUCHSIA, RASPBRY, NEONPINK, PALEPINK, PINK, VERMIL,
ORANGE, CERISE, KHAKI, BROWN, BLACK}

QUERY SYNTAX COLoR?

RESPONSE FORMAT COLoR <object>,<color>[,...<object>,<color>]

EXAMPLE The following instruction selects color scheme U1, and then red as
the color of Channel 1:

CSCH U1

COLR C1,RED

RELATED COMMANDS COLOR_SCHEME, PERSIST_COLOR

The Commands and Queries

23

ADDITIONAL INFORMATION

Notation
<color> Color <color> Color
WHITE White OCSPRAY Ocean Spray
CYAN Cyan ICEBLUE Ice Blue
YELLOW Yellow PASTBLUE Pastel Blue
GREEN Green PALEBLUE Pale Blue
MAGENTA Magenta SKYBLUE Sky Blue
BLUE Blue ROYLBLUE Royal Blue
RED Red DEEPBLUE Deep Blue
LTGRAY Light Gray NAVY Navy
GRAY Gray PLUM Plum
SLGRAY Slate Gray PURPLE Purple
CHGRAY Charcoal Gray AMETHYST Amethyst
DKCYAN Dark Cyan FUCHSIA Fuchsia
CREAM Cream RASPB Raspberry
SAND Sand NEONPINK Neon Pink
AMBER Amber PALEPINK Pale Pink
OLIVE Olive PINK Pink
LTGREEN Light Green VERMIL Vermilion
JADE Jade ORANGE Orange
LMGREEN Lime Green CERISE Cerise
APGREEN Apple Green KHAKI Khaki
EMGREEN Emerald Green BROWN Brown
GRGREEN Grass Green BLACK Black
<object> Display Object <object> Display Object
BACKGND Background CURSOR cursors
C1..C4 Channel Traces WARNING Warning Messages
TA..TD Function Traces NEUTRAL Neutral color
GRID Grid lines OVERLAYS Menu background color

(Full Screen)

 The Commands and Queries

24

DISPLAY COLOR_SCHEME, CSCH
Command/Query

DESCRIPTION The COLOR_SCHEME command is used to select the color
scheme for the display.

The response to the COLOR_SCHEME? query indicates the
color scheme in use.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX Color_SCHeme <scheme>

<scheme > : = {1, 2, 3, 4, 5, 6, 7, U1, U2, U3, U4}

QUERY SYNTAX Color_SCHeme?

RESPONSE FORMAT Color_SCHeme <scheme>

EXAMPLE The following instruction selects the user color scheme U2:

CSCH U2

RELATED COMMANDS COLOR, PERSIST_COLOR

The Commands and Queries

25

ACQUISITION COMBINE_CHANNELS, COMB
Command/Query

DESCRIPTION The COMBINE_CHANNELS command controls the channel
interleaving function of the acquisition system. The
COMBINE_CHANNELS? query returns the interleaving
function’s current status.

COMMAND SYNTAX COMBine_channels <state>

<state> : = {1, 2}

QUERY SYNTAX COMBine_channels?

RESPONSE FORMAT COMB <state>

EXAMPLE The following engages the interleaving function:

COMB 2

RELATED COMMANDS COMBINE_SOURCE

 The Commands and Queries

26

ACQUISITION COMBINE_SOURCE, COMS
Command/Query

DESCRIPTION The COMBINE_SOURCE command controls which input channel is
used for interleaving.

The COMBINE_SOURCE? query returns the current setting.

COMMAND SYNTAX COMbine_Source <channel>

<channel> : = {C1, C2}

QUERY SYNTAX COMbine_Source?

RESPONSE FORMAT COMS <channel>

EXAMPLE The following sets the interleaved source to
Channel 1:

COMS C1

RELATED COMMANDS COMBINE_CHANNELS

The Commands and Queries

27

COMMUNICATION COMM_FORMAT, CFMT
Command/Query

DESCRIPTION The COMM_FORMAT command selects the format the
LSA1000 uses to send waveform data. The available options
allow the block format, the data type and the encoding mode to
be modified from the default settings.

The COMM_FORMAT? query returns the currently selected
waveform data format.

COMMAND SYNTAX Comm_ForMaT <block_format>,<data_type>,<encoding>
<block_format> : = {DEF9, IND0, OFF}
<data_type> : = {BYTE, WORD}
<encoding> : = {BIN, HEX}
(ETHERNET uses both encoding forms)

Initial settings (i.e. after power-on) are:
DEF9, WORD, BIN

QUERY SYNTAX Comm_ForMaT?

RESPONSE FORMAT Comm_ForMaT <block_format>,<data_type>,<encoding>

EXAMPLE The following code redefines the transmission format of
waveform data. The data will be transmitted as a block of
indefinite length. Data will be coded in binary and represented
as 8-bit integers.

CFMT IND0,BYTE,BIN

ADDITIONAL INFORMATIONBLOCK FORMAT

DEF9: Uses the IEEE 488.2 definite length arbitrary block
response data format. The digit 9 indicates that the byte
count consists of 9 digits. The data block directly follows
the byte count field.

For example, a data block consisting of three data bytes
would be sent as:
WF DAT1,#9000000003<DAB><DAB><DAB>
where <DAB> represents an eight-bit binary data byte.

 The Commands and Queries

28

IND0: Uses the IEEE 488.2 indefinite length arbitrary block
response data format.

A <NL^END> (new line with EOI) signifies that block
transmission has ended.

The same data bytes as above would be sent as:
WF DAT1,#0<DAB><DAB><DAB><NL^END>

OFF: Same as IND0. In addition, the data block type identifier
and the leading #0 of the indefinite length block will be
suppressed. The data presented above would be sent
as:
WF <DAB><DAB><DAB><NL^END>

Note: The format OFF does not conform to the IEEE 488.2
standard and is only provided for special applications where the
absolute minimum of data transfer may be important.

DATA TYPE

BYTE: Transmits the waveform data as eight-bit signed
integers (one byte).

WORD: Transmits the waveform data as 16-bit signed integers
(two bytes).

Note: The data type BYTE transmits only the high-order bits of
the internal 16-bit representation. The precision contained in the
low-order bits is lost.

ENCODING

BIN: Binary encoding

HEX: Hexadecimal encoding (bytes are converted to two
hexadecimal ASCII digits (0, ...9, A, ...F)

RELATED COMMANDS WAVEFORM

The Commands and Queries

29

COMMUNICATION COMM_HEADER, CHDR
Command/Query

DESCRIPTION The COMM_HEADER command controls the way the LSA1000
formats responses to queries. The instrument provides three
response formats: LONG format, in which responses start with
the long form of the header word; SHORT format, where
responses start with the short form of the header word; and
OFF, for which headers are omitted from the response and
suffix units in numbers are suppressed. Until the user requests
otherwise, the SHORT response format is used.

This command does not affect the interpretation of messages
sent to the LSA1000. Headers may be sent in their long or short
form regardless of the COMM_HEADER setting.

Querying the vertical sensitivity of Channel 1 may result in one
of the following responses:

COMM_HEADER Response
LONG C1:VOLT_DIV 200E-3 V

SHORT C1:VDIV 200E-3 V

OFF 200E-3

COMMAND SYNTAX Comm_HeaDeR <mode>
<mode> : = {SHORT, LONG, OFF}

Note: The default mode, i.e. the mode just after power-on, is
SHORT.

QUERY SYNTAX Comm_HeaDeR?

RESPONSE FORMAT Comm_HeaDeR <mode>

EXAMPLE The following code sets the response header format to SHORT:

CHDR SHORT

RELATED COMMANDS COMM_HELP_LOG

 The Commands and Queries

30

COMMUNICATION COMM_HELP, CHLP
Command/Query

DESCRIPTION The COMM_HELP command controls the level of operation of
the diagnostics utility Remote Control Assistant, which assists in
debugging remote control programs. Selected when using the
instrument’s front-panel via the “UTILITIES” and “SPECIAL
MODES” menus, Remote Control Assistant can log all message
transactions occurring between the external controller and the
LSA1000. The log may be viewed at any time in the provided
menu on the screen and has four levels to choose from:

OFF Don't assist at all.
EO Log detected Errors Only (default after power-on).
FD Log the Full Dialog between the controller and the

LSA1000.

COMMAND SYNTAX Comm_HeLP <level>
<level> : = { OFF, EO, FD }

The default level (i.e. the level just after power-on) is EO.

QUERY SYNTAX Comm_HeLP?

RESPONSE FORMAT Comm_HeLP <level>

EXAMPLE (GPIB) After sending this command, all the following commands and
responses will be logged:

CHLP FD

RELATED COMMANDS COMM_HELP_LOG

The Commands and Queries

31

COMMUNICATION COMM_HELP_LOG?, CHL?
Query

DESCRIPTION The COMM_HELP_LOG query returns the current contents of
the log generated by the Remote Control Assistant (see CHLP
description). If the optional parameter CLR is specified, the log
will be cleared after the transmission. Otherwise, it will be kept.

QUERY SYNTAX Comm_HeLP_Log? [CLR]

RESPONSE FORMAT Comm_Help_Log <string containing the logged text>

EXAMPLE (GPIB) The following code reads the remote control log and prints it:

CHL?

RELATED COMMANDS COMM_HELP

 The Commands and Queries

32

COMMUNICATION COMM_NET, CONET
Command/Query

DESCRIPTION The COMM_NET command specifies the network address of the
instrument. The COMM_NET? query returns the current network
address.

COMMAND SYNTAX COmm_NET <subaddress>
<subaddress> : = {IP, “X.X.X.X.”, MASK, ”X.X.X.X.”,
GATEWAY, “X.X.X.X”}

QUERY SYNTAX COmm_NET?

RESPONSE FORMAT COmm_NET <subaddress>

EXAMPLE _______________WARNING_____________
This command acts immediately. The software used to send the
command will need to be initialized with the new address before
continuing.
The query and response:
CONET?
IP,”172.25.1.2”,MASK,”255.255.0.0”,GATEWAY,”172.25
.0.1”
This command changes the IP:
COMM_NET IP,”172.28.11.77”

The Commands and Queries

33

COMMUNICATION COMM_ORDER, CORD
Command/Query

DESCRIPTION The COMM_ORDER command controls the byte order of
waveform data transfers. Waveform data may be sent with the
most significant byte (MSB) or the least significant byte (LSB) in
the first position. The default mode is the MSB first.

COMM_ORDER applies equally to the waveform’s descriptor
and time blocks. In the descriptor some values are 16 bits long
(“word”), 32 bits long (“long “or “float”), or 64 bits long (“double”).
In the time block all values are floating values, i.e. 32 bits long.
When “COMM_ORDER HI” is selected, the most significant byte
is sent first. When “COMM_ORDER LO” is specified, the least
significant byte is sent first.

The COMM_ORDER? query returns the byte transmission order
currently in use.

COMMAND SYNTAX Comm_ORDer <mode>
<mode> : = {HI, LO}

Note: The initial mode, i.e. the mode after power-on, is HI.

QUERY SYNTAX Comm_ORDer?

RESPONSE FORMAT Comm_ORDer <mode>

EXAMPLE The order of transmission of waveform data depends on the
data type. The following table illustrates the different
possibilities.

Type CORD HI CORD LO
Word <MSB><LSB> <LSB><MSB>

Long/Float <MSB><byte2><byte3><LSB> <LSB><byte3><byte2><MSB>

Double <MSB><byte2>...<byte7><LSB> <LSB><byte7>...<byte2><MSB>

RELATED COMMANDS WAVEFORM

 The Commands and Queries

34

CURSOR CURSOR_MEASURE, CRMS
Command/Query

DESCRIPTION The CURSOR_MEASURE command specifies the type of
cursor or parameter measurement to be displayed, and is the
main command for displaying parameters and pass/fail.

The CURSOR_MEASURE? query indicates which cursors or
parameter measurements are currently displayed.

Notation
ABS absolute reading of relative cursors

CUST custom parameters

FAIL pass/fail: fail

HABS horizontal absolute cursors

HPAR standard time parameters

HREL horizontal relative cursors

OFF cursors and parameters off

PARAM synonym for VPAR

PASS pass/fail: pass

SHOW custom parameters (old form)

STAT parameter statistics

VABS vertical absolute cursors

VPAR standard voltage parameters

VREL vertical relative cursors

Note: The PARAM mode is turned OFF when the XY mode is
ON.

COMMAND SYNTAX CuRsor_MeaSure <mode>[,<submode>]
<mode> : = {CUST, FAIL, HABS, HPAR, HREL, OFF, PARAM,

PASS, SHOW, VABS, VPAR, VREL}
<submode> : = {STAT, ABS}

Note 1: The keyword STAT is optional with modes CUST,
HPAR, and VPAR. If present, STAT turns parameter statistics
on. Absence of STAT turns parameter statistics off.

The Commands and Queries

35

Note 2: The keyword ABS is optional with mode HREL. If it is
present, ABS chooses absolute amplitude reading of relative
cursors. Absence of ABS selects relative amplitude reading of
relative cursors.

QUERY SYNTAX CuRsor_MeaSure?

RESPONSE FORMAT CuRsor_MeaSure <mode>

EXAMPLE The following command switches on the vertical relative cursors:

CRMS VREL

The following command determines which cursor is currently
turned on:

CRMS?

Example of response message:

CRMS OFF

RELATED COMMANDS CURSOR_SET, PARAMETER_STATISTICS,
PARAMETER_VALUE, PASS_FAIL_CLEAR,
PASS_FAIL_CONDITION, PASS_FAIL_DELETE,
PASS_FAIL_MASK,

ADDITIONAL INFORMATION To turn off the cursors, parameter measurements or Pass/Fail
tests, use:

CURSOR_MEASURE OFF

To turn on a cursor display, use one of the following four forms:
CURSOR_MEASURE HABS
CURSOR_MEASURE HREL
CURSOR_MEASURE VABS
CURSOR_MEASURE VREL

 The Commands and Queries

36

To turn on parameter measurements without statistics, use one
of the following three forms:

CURSOR_MEASURE CUST
CURSOR_MEASURE HPAR
CURSOR_MEASURE VPAR

To turn on parameter statistics, add the keyword STAT to the
above three forms.

To turn on Pass or Fail tests on parameter or mask tests, use:
CURSOR_MEASURE PASS
CURSOR_MEASURE FAIL

Use the command:
PASS_FAIL_CONDITION

to select parameters in the Custom mode, and to modify the test
conditions in the Pass/Fail mode.

The Commands and Queries

37

CURSOR CURSOR_SET, CRST
Command/Query

DESCRIPTION The CURSOR_SET command allows the user to position any
one of the eight independent cursors at a given screen location.
The positions of the cursors can be modified or queried even if
the required cursor is not currently displayed on the screen.

When setting a cursor position, a trace must be specified,
relative to which the cursor will be positioned.

The CURSOR_SET? query indicates the current position of the
cursor(s). The values returned depend on the grid type selected.

Note: To change only the trace without repositioning the cursors,
the CURSOR_SET command may be given with no argument
(for example,. TB:CRST).

Notation
HABS horizontal absolute PREF parameter reference
HDIF horizontal difference VABS vertical absolute
HREF horizontal reference VDIF vertical difference
PDIF parameter difference VREF vertical reference

COMMAND SYNTAX <trace> : CuRsor_SeT <cursor>,<position>[,<cursor>,<position>,<cursor>
,<position>]

<trace> : = {TA, TB, TC, TD, C1, C2}

<cursor> : = {HABS, VABS, HREF, HDIF, VREF, VDIF, PREF,
PDIF}

<position> : = 0 to 10 DIV (horizontal)

<position> : = − 29.5 to 29.5 DIV (vertical)

Note 1: The suffix DIV is optional.

 The Commands and Queries

38

Note 2: Parameters are grouped in pairs. The first parameter
specifies the cursor to be modified and the second one indicates
its new value. Parameters may be grouped in any order and may
be restricted to those items to be changed.

QUERY SYNTAX <trace> : CuRsor_SeT? [<cursor>,...<cursor>]

<cursor> : = {HABS, VABS, HREF, HDIF, VREF, VDIF, PREF,
PDIF, ALL}

RESPONSE FORMAT <trace> : CuRsor_SeT <cursor>,<position>[,<cursor>,<position>,...
<cursor>,<position>]

If <cursor> is not specified, ALL will be assumed. If the position
of a cursor cannot be determined in a particular situation, its
position will be indicated as UNDEF.

EXAMPLE The following command positions the VREF and VDIF cursors at
+3 DIV and − 7 DIV respectively, using Trace A as a reference:

TA:CRST VREF,3DIV,VDIF, − 7DIV

RELATED COMMANDS CURSOR_MEASURE, CURSOR VALUE,
PARAMETER_VALUE, PER_CURSOR_SET,
XY_CURSOR_SET

The Commands and Queries

39

CURSOR CURSOR_VALUE?, CRVA?
Query

DESCRIPTION The CURSOR_VALUE? query returns the values measured by the
specified cursors for a given trace. (The PARAMETER_VALUE?
query is used to obtain measured waveform parameter values.)

Notation
HABS horizontal

absolute VABS vertical
absolute

HREL horizontal
relative VREL vertical relative

QUERY SYNTAX <trace> : CuRsor_VAlue? [<mode>,...<mode>]
<trace> : = {TA, TB, TC, TD, C1, C2}
<mode> : = {HABS, HREL, VABS, VREL, ALL}

RESPONSE FORMAT <trace> : CuRsor_VAlue HABS,<abs_hori>,<abs_vert>
<trace> : CuRsor_VAlue HREL,<delta_hori>,<delta_vert>,

<absvert_ref>,<absvert_dif>
<trace> : CuRsor_VAlue VABS,<abs_vert>
<trace> : CuRsor_VAlue VREL,<delta_vert>

For horizontal cursors, both horizontal as well as vertical values
are given. For vertical cursors only vertical values are given.

Note: If <mode> is not specified or equals ALL, all the measured
cursor values for the specified trace are returned. If the value of
a cursor cannot be determined in the current environment, the
value UNDEF will be returned.

EXAMPLE The following query reads the measured absolute horizontal
value of the cross-hair cursor (HABS) on Channel 2:

C2:CRVA? HABS

Response message:
C2:CRVA HABS,34.2E − 6 S, 244 E− 3 V

RELATED COMMANDS CURSOR_SET, PARAMETER_VALUE,
PER_CURSOR_VALUE, XY_CURSOR_VALUE

 The Commands and Queries

40

DISPLAY DATA_POINTS, DPNT
Command/Query

DESCRIPTION The DATA_POINTS command is used to control whether the
waveform sample points are shown as single display pixels or
are made bold.

The response to the DATA_POINTS? query indicates whether
the waveform sample points are being displayed as single pixels
or in bold face.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX Data_PoiNTs <state>
<state> : = {NORMAL, BOLD}

QUERY SYNTAX Data_PoiNTs?

RESPONSE FORMAT DataPoiNTs <state>

EXAMPLE The following instruction highlights the waveform sample points:

DPNT BOLD

The Commands and Queries

41

MISCELLANEOUS DATE
Command/Query

DESCRIPTION The DATE command changes the date/time of the LSA1000’s
internal real-time clock.

The DATE? query returns the current date/time setting.

COMMAND SYNTAX DATE <day>,<month>,<year>,<hour>,<minute>,<second>
<day> : = 1 to 31
<month> : = {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,

OCT, NOV, DEC}
<year> : = 1990 to 2089
<hour> : = 0 to 23
<minute> : = 0 to 59
<second> : = 0 to 59

Note: It is not always necessary to specify all the DATE
parameters. Only those parameters up to and including the
parameter to be changed need be specified in order to change
the “year” setting, specify day, month and year together with the
required settings. The time settings will remain unchanged. To
change the “second” setting, all the DATE parameters must be
specified with the required settings.

QUERY SYNTAX DATE?

RESPONSE FORMAT DATE <day>,<month>,<year>,<hour>,<minute>,<second>

EXAMPLE This instruction will change the date to January 1, 1997 and the
time to 1:21:16 p.m. (13:21:16 in 24-hour notation):

DATE 1,JAN,1997,13,21,16

 The Commands and Queries

42

STATUS DDR?
Query

DESCRIPTION The DDR? query reads and clears the contents of the Device
Dependent or device specific error Register (DDR). In the case
of a hardware failure, the DDR register specifies the origin of the
failure. The following table gives details.

Bit Bit
Value

Description

15...14 0 Reserved
13 8192 1 Timebase hardware failure detected
12 4096 1 Trigger hardware failure detected
11 2048 0 Reserved
10 1024 0 Reserved
9 512 1 Channel 2 hardware failure detected
8 256 1 Channel 1 hardware failure detected
7 128 1 External input overload condition detected
6...4 0 Reserved
3 8 0 Reserved
2 4 0 Reserved
1 2 1 Channel 2 overload condition detected
0 1 1 Channel 1 overload condition detected

QUERY SYNTAX DDR?

RESPONSE FORMAT DDR <value>
<value> : = 0 to 65535

EXAMPLE The following instruction reads the contents of the DDR register:

DDR

Response message:

DDR 0

RELATED COMMANDS ALL_STATUS, *CLS

The Commands and Queries

43

FUNCTION DEFINE, DEF
Command/Query

DESCRIPTION The DEFINE command specifies the mathematical expression
to be evaluated by a function. This command is used to control
all functions in the standard instruments and WP0X processing
packages.

COMMAND SYNTAX <function> : DEFine EQN,‘<equation>’
[,<param_name>,<value>,...]

Note 1: Parameters are grouped in pairs. The first in the pair
names the variable to be modified, <param_name>, while the
second one gives the new value to be assigned. Pairs can be
given in any order and restricted to the variables to be changed.

Note 2: Space (blank) characters inside equations are optional.

Note 3: The LSA1000 only calculates functions that have a
consumer. That is, either the function trace must be on (see the
TRACE command, page 131) or the function must be used by
another function or a parameter.

QUERY SYNTAX <function> : DEFine?

RESPONSE FORMAT <function> : DEFine EQN,‘<equation>’[,MAXPTS,<max_points>]
[,SWEEPS,<max_sweeps>][,WEIGHT,<weight>][,BITS,<bits>]

<param_name> <value> Description
EQN ‘<equation>’ Function equation as defined

below
MAXPTS <max_points> Maximum number of points to

compute
SWEEPS <max_sweeps> Maximum number of sweeps

Parameters To Support Additional Functions in WP01
WEIGHT <weight> Continuous Average weight
BITS <bits> Number of ERES bits

Parameters To Support Additional Functions in WP02
WINDOW <window_type> FFT window function

 The Commands and Queries

44

Parameters To Support Additional Functions in WP03 or DDM
MAXBINS <bins> Number of bins in histogram
MAX_EVENTS <max_values> Maximum number of values in

histogram
CENTER <center> Horizontal center position for

histogram display.
WIDTH <width> Width of histogram display
VERT <vert_scale> Vertical scaling type

Parameters To Support Additional Functions in PRML
LENGTH <length> Number of points to use from first

waveform
START <start> Starting point in second

waveform

Function Equations And Names Available On All Models
<source> Identity

+<source> Identity

-<source> Negation

<source1> + <source2> Addition

<source1> - <source2> Subtraction

<source1><source2> Multiplication

<source1>/<source2> Ratio

AVGS(<source>) Average Summed

SINX(<source>) Sin(x)/x interpolator

ZOOMONLY (<extended_source>) Zoom only (No Math)

Extended Functions Available On Instruments With WP01 Processing Firmware
ABS(<source>) Absolute Value
AVGC(<source>) Continuous Average
DERI(<source>) Derivative
ERES(<source>) Enhanced Resolution
EXP(<source>) Exponential (power of e)
EXP10(<source>) Exponential (power of 10)
EXTR(<source>) Extrema (Roof and Floor)
FLOOR(EXTR(<source>)) Floor (Extrema source only)

INTG(<source>[{+,-} <addend>]) Integral

The Commands and Queries

45

LN(<source>) Logarithm base e
LOG10(<source>) Logarithm base 10
RESC([{+,-}][<multiplier>*]<source>[{+,-}<addend>]) Rescale
ROOF(EXTR(<source>)) Roof (Extrema source only)
1/<source> Reciprocal
SQR(<source>) Square
SQRT(<source>) Square Root

FFT Functions Available on Instruments with WP02 Processing Firmware
Note: The source waveform must be a time-domain signal, single segment.

FFT(<source>) Fast Fourier Transform (complex result)
REAL(FFT(<source>)) Real part of complex result
IMAG(FFT(<source>)) Imaginary part of complex result
MAG(FFT(<source>)) Magnitude of complex result
PHASE(FFT(<source>)) Phase angle (degrees) of complex result
PS(FFT(<source>)) Power spectrum
PSD(FFT(<source>)) Power density
RESC([{+,-}][<multiplier>]<source>[{+,-}<addend>]) Rescale

Power Average Functions Available on Instruments with WP02 Processing
Firmware

Note: The source waveform must be another function defined as a Fourier transform.
MAG(AVGP(<function>)) PS(AVGP(<function>)) PSD(AVGP(<function>))

Function Equations and Names Available on Instruments with WP03 or DDM
Firmware

HIST(<custom_line>) Histogram of parameter on custom line

Function Equations and Names Available on Instruments with PRML Firmware
CORR(<source1>,<source2>) Cross Correlation

Source values

Note: The numbers in CUST1, CUST2, CUST3, CUST4, and
CUST5 refer to the line numbers of the selected custom
parameters.
<sourceN> : = {TA, TB, TC, TD, M1, M2, M3, M4, C1, C2}
<function> : = {TA, TB, TC, TD}
<custom_line> : = {CUST1, CUST2, CUST3, CUST4, CUST5 }

 The Commands and Queries

46

<extended_source> : = {C1, C2, TA, TB, TC, TD, M1,
M2, M3, M4}

Values to define number of points/sweeps
<max_points> : = 50 to 10 000 000
<max sweeps> : = 1 to 1000 (For standard instruments)
<max_sweeps> : = 1 to 1 000 000 (For WP01 only)
<max_sweeps> : = 1 to 50 000 (WP02 Power Spectrum only)

Values for Rescale Function
<addend> : = 0.0 to 1e15
<multiplier> : = 0.0 to 1e15

Values for Summation Average and ERES
<weight> : = {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023}
<bits> : = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}
Values for FFT window function
<window_type> : = {BLHA, FLTP, HAMM, HANN, RECT}

FFT Window Function Notation
LHA Blackman–Harris window

FLTP Flat Top window

HABMM Hamming window

HANN von Hann window

RECT Rectangular window

Values for WP03 histogramming
<max bins> : = {20, 50, 100, 200, 500, 1000, 2000}
<max_events> : = 20 to 2e9 (in a 1–2–5 sequence)
<center> : = − 1e15 to 1e15
<width> : = 1e− 30 to 1e30 (in a 1–2–5 sequence)
<vert_scale> : = {LIN, LOG, CONSTMAX}

The Commands and Queries

47

Histogram Notation
LIN Use linear vertical scaling for histogram display

LOG Use log vertical scaling for histogram display

CONSTMAX Use constant maximum linear scaling for histogram
display

Values for PRML correlation
<length> : = 0 to 10 divisions
<start> : = 0 to 10 divisions

G AVAILABILITY SWEEPS is the maximum number of sweeps (Average and
Extrema only).

Note: The pair SWEEPS,<max_sweeps> applies only to the
summed averaging (AVGS).

EXAMPLE The following instruction defines Trace A to compute the
summed average of Channel 1 using 5000 points over 200
sweeps:
TA:DEF EQN,‘AVGS(C1)’,MAXPTS,5000,SWEEPS,200

WP01 EXAMPLE The following instruction defines Trace A to compute the product
of Channel 1 and Channel 2, using a maximum of 10 000 input
points:
TA:DEF EQN,‘C1*C2’,MAXPTS,10000

WP02 FFT EXAMPLE The following instruction defines Trace A to compute the Power
Spectrum of the FFT of Channel 1. A maximum of 1000 points
will be used for the input. The window function is Rectangular.
TA:DEF EQN,‘PS(FFT(C1))’,MAXPTS,1000,WINDOW,RECT

 The Commands and Queries

48

WP02 PS EXAMPLE The following instruction defines Trace B to compute the Power
Spectrum of the Power Average of the FFT being computed by
Trace A, over a maximum of 244 sweeps.

TB:DEF EQN,‘PS(AVGP(TA))’,SWEEPS,244

WP03 EXAMPLE The following command defines Trace C to construct the
histogram of the all rise time measurements made on source
Channel 1. The rise time measurement is defined on custom
line 2. The histogram has a linear vertical scaling and the rise
time parameter values are binned into 100 bins.
PACU 2,RISE,C1
TC:DEF EQN,‘HIST(CUST2)’,VERT,LIN,MAXBINS,100

RELATED COMMANDS FIND_CTR_RANGE, FUNCTION_RESET, INR?,
PARAMETER_CUSTOM, PARAMETER_VALUE?,
PASS_FAIL_CONDITION, TRACE

The Commands and Queries

49

MASS STORAGE DELETE_FILE, DELF
Command

DESCRIPTION The DELETE_FILE command deletes files from the currently
selected directory on mass storage.

COMMAND SYNTAX DELete_File DISK,<device>,FILE,‘<filename>’

<device> : = {CARDG, FLPYG, HDDG}
<filename> : = An alphanumeric string of up to eight

characters, followed by a dot and an extension of
up to three characters.

G AVAILABILITY <device> : CARD available only when MC01 option is fitted.
<device> : FLPY available only when FD01 option is fitted.
<device> : HDD available only when HD01 option is fitted.

EXAMPLE The following command deletes a front-panel setup from the
memory card:
DELF DISK,CARD,FILE,‘P001.PNL’

RELATED COMMANDS DIRECTORY, FORMAT_CARD, FORMAT_FLOPPY,
FORMAT_HDD

 The Commands and Queries

50

MASS STORAGE DIRECTORY, DIR
Command/Query

DESCRIPTION The DIRECTORY command is used to manage the creation and
deletion of file directories on mass storage devices. It also
allows selection of the current working directory and listing of
files in the directory.

The query response consists of a double-quoted string
containing a DOS-like listing of the directory. If no mass storage
device is present, or if it is not formatted, the string will be
empty.

COMMAND SYNTAX DIRectory DISK,<device>,ACTION,<action>,‘<directory>’

QUERY SYNTAX DIRectory? DISK,<device> [,‘<directory>’]

<device> : = {CARDG, FLPYG, HDDG}
<action> : = {CREATE, DELETE, SWITCH}
<directory> : = A legal DOS path or filename. (This can include
the ‘\’ character to define the root directory.)

Note: the query DIRectory_list? is also accepted for backward
compatibility but may not be supported in the future.

RESPONSE FORMAT DIRectory DISK,<device> “<directory>”
<directory> : = A variable length string detailing the file content
of the memory card, floppy disk or hard disk.

G AVAILABILITY <device> : CARD available only when MC01 option is fitted.
<device> : FLPY available only when FD01 option is fitted.
<device> : HDD available only when HD01 option is fitted.

The Commands and Queries

51

EXAMPLE The following asks for a listing of the directory of the memory
card:

DIR? DISK,CARD

Response message:
DIR “
Directory LECROY 1 DIR of 04-MAY-1998
10:46:20 on Memory Card

SC1000 2859 19-DEC-1994 16:33:06
SC1001 2859 19-DEC-1994 16:34:32
TEST5 002 20359 12-MAY-1998

13:34:12
3 File(s) 1948672 bytes free
”

 The Commands and Queries

52

DISPLAY DISPLAY, DISP
Command/Query

DESCRIPTION The DISPLAY command controls the display screen of programs
such as ScopeExplorer When the user is remotely controlling
the instrument and does not need to use the display map
feature, it can be useful to switch off the display map update via
the DISPLAY OFF command. This improves instrument
response time, since the waveform graphic generation
procedure is suppressed.

The response to the DISPLAY? query indicates the display state
of the instrument.

Note: When the display has been set to OFF, the real-time clock
and the message field update. However, the waveforms and
associated texts remain unchanged.

COMMAND SYNTAX DISPlay <state>
<state> : = {ON, OFF}

QUERY SYNTAX DISPlay?

RESPONSE FORMAT DISPlay <state>

EXAMPLE The following instruction turns off the display generation.

DISP OFF

The Commands and Queries

53

DISPLAY DOT_JOIN, DTJN
Command/Query

DESCRIPTION The DOT_JOIN command controls the interpolation lines
between data points. This command is included for use with
programs such as ScopeExplorer.

COMMAND SYNTAX DoT_JoiN <state>
<state> : = {ON, OFF}

QUERY SYNTAX DoT_JoiN?

RESPONSE FORMAT DoT_JoiN <state>

EXAMPLE The following instruction turns off the interpolation lines:

DTJN OFF

 The Commands and Queries

54

DISPLAY DUAL_ZOOM, DZOM
Command/Query

DESCRIPTION By setting DUAL_ZOOM ON, the horizontal magnification and
positioning controls are applied to all expanded traces
simultaneously. This command is useful if the contents of all
expanded traces are to be examined at the same time.

The DUAL_ZOOM? query indicates whether multiple zoom is
enabled or not.

Note: This command has the same effect as MULTI_ZOOM.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX Dual_ZOoM <mode>

<mode> : = {ON, OFF}

QUERY SYNTAX Dual_ZOoM?

RESPONSE FORMAT Dual_ZOoM <mode>

EXAMPLE The following instruction turns dual zoom on:

DZOM ON

RELATED COMMANDS HOR_MAGNIFY, HOR_POSITION, MULTI_ZOOM

The Commands and Queries

55

STATUS *ESE
Command/Query

DESCRIPTION The *ESE command sets the Standard Event Status Enable
register (ESE). This command allows one or more events in the
ESR register to be reflected in the ESB summary message bit
(bit 5) of the STB register. For an overview of the ESB defined
events refer to the ESR table on page 58.

The *ESE? query reads the contents of the ESE register.

COMMAND SYNTAX *ESE <value>
<value> : = 0 to 255

QUERY SYNTAX *ESE?

RESPONSE FORMAT *ESE <value>

EXAMPLE The following instruction allows the ESB bit to be set if a user
request (URQ bit 6, i.e. decimal 64) and/or a device dependent
error (DDE bit 3, i.e. decimal 8) occurs. Summing these values
yields the ESE register mask 64+8=72.

*ESE 72

RELATED COMMANDS *ESR

 The Commands and Queries

56

STATUS *ESR?
Query

DESCRIPTION The *ESR? query reads and clears the contents of the Event
Status Register (ESR). The response represents the sum of the
binary values of the register bits 0 to 7. The table below gives an
overview of the ESR register structure.

QUERY SYNTAX *ESR?

RESPONSE FORMAT *ESR <value>
<value> : = 0 to 255

EXAMPLE The following instruction reads and clears the contents of the
ESR register:

*ESR

Response message:
*ESR 0

RELATED COMMANDS ALL_STATUS, *CLS, *ESE

The Commands and Queries

57

ADDITIONAL INFORMATION
Standard Event Status Register (ES)

Bit Bit Value Bit Name Description Note
15...8 0 reserved by

IEEE 488.2
7 128 PON 1 Power off-to-

ON transition
has occurred

(1)

6 64 URQ 1 User ReQuest
has been
issued

(2)

5 32 CME 1 CoMmand
parser Error
has been
detected

(3)

4 16 EXE 1 EXecution
Error detected

(4)

3 8 DDE 1 Device specific
Error occurred

(5)

2 4 QYE 1 QuerY Error
occurred

(6)

1 2 RQC 0 Instrument
never requests
bus control

(7)

0 1 OPC 0 OPeration
Complete bit
not used

(8)

 The Commands and Queries

58

Notes
(1) The Power On (PON) bit is always turned on (1) when the

unit is powered up.

(2) The User Request (URQ) bit is set true (1) when a soft key is
pressed. An associated register URR identifies which key
was selected. For further details refer to the URR? query.

(3) The CoMmand parser Error bit (CME) is set true (1)
whenever a command syntax error is detected. The CME bit
has an associated CoMmand parser Register (CMR) which
specifies the error code. Refer to the query CMR? for further
details.

(4) The EXecution Error bit (EXE) is set true (1) when a
command cannot be executed due to some device condition
(e.g. LSA1000 in local state) or a semantic error. The EXE bit
has an associated Execution Error Register (EXR) which
specifies the error code. Refer to query EXR? for further
details.

(5) The Device specific Error (DDE) is set true (1) whenever a
hardware failure has occurred at power-up, or execution time,
such as a channel overload condition, a trigger or a timebase
circuit defect. The origin of the failure may be localized via
the DDR? or the self test *TST? query.

(6) The Query Error bit (QYE) is set true (1) whenever (a) an
attempt is made to read data from the Output Queue when
no output is either present or pending, (b) data in the Output
Queue has been lost, (c) both output and input buffers are full
(deadlock state), (d) an attempt is made by the controller to
read before having sent an <END>, (e) a command is
received before the response to the previous query was read
(output buffer flushed).

(7) The ReQuest Control bit (RQC) is always false (0), as the
LSA1000 has no GPIB controlling capability.

(8) The OPeration Complete bit (OPC) is set true (1) whenever
*OPC has been received, since commands and queries are
strictly executed in sequential order. The LSA1000 starts
processing a command only when the previous command
has been entirely executed.

The Commands and Queries

59

STATUS EXR?
Query

DESCRIPTION The EXR? query reads and clears the contents of the EXecution
error Register (EXR). The EXR register specifies the type of the
last error detected during execution. Refer to the table next page
for further details.

QUERY SYNTAX EXR?

RESPONSE FORMAT EXR <value>
<value> : = 21 to 64

EXAMPLE The following instruction reads the contents of the EXR register:

EXR

Response message (if no fault):

EXR 0

RELATED COMMANDS ALL_STATUS, *CLS

 The Commands and Queries

60

ADDITIONAL INFORMATION

Execution Error Status Register Structure (EXR)
Value Description

21 Permission error. The command cannot be executed in local mode.
22 Environment error. The instrument is not configured to correctly process a command.
23 Option error. The command applies to an option which has not been installed.
24 Unresolved parsing error.
25 Parameter error. Too many parameters specified.
26 Non-implemented command.
30 Hex data error. A non-hexadecimal character has been detected in a hex data block.
31 Waveform error. The amount of data received does not correspond to descriptor indicators.
32 Waveform descriptor error. An invalid waveform descriptor has been detected.
33 Waveform text error. A corrupted waveform user text has been detected.
34 Waveform time error. Invalid RIS or TRIG time data has been detected.
35 Waveform data error. Invalid waveform data have been detected.
36 Panel setup error. An invalid panel setup data block has been detected.
50 No mass storage present when user attempted to access it. *

51 Mass storage not formatted when user attempted to access it. *

53 Mass storage was write protected when user attempted to create, or a file, to delete a file, or to
format the device. *

54 Bad mass storage detected during formatting. *

55 Mass storage root directory full. Cannot add directory. *

56 Mass storage full when user attempted to write to it. *

57 Mass storage file sequence numbers exhausted (999 reached). *

58 Mass storage file not found. *

59 Requested directory not found. *

61 Mass storage filename not DOS compatible, or illegal filename. *

62 Cannot write on mass storage because filename already exists. *

* For LSA1000s fitted with floppy disk (FD01), memory card (MCO1) or hard disk
(HD01) options.

The Commands and Queries

61

MASS STORAGE FILENAME, FLNMG
Command/Query

DESCRIPTION The FILENAME command is used to change the default
filename given to any traces, setups and hard copies when they
are being stored to a mass storage device.

COMMAND SYNTAX FiLeNaMe TYPE,<type>,FILE,‘<filename>’

<type> : = {C1, C2, TA, TB, TC, TD, SETUP, HCOPY }

<filename> : = For C1 to TD, an alphanumeric string of up to
eight characters forming a legal DOS filename.
Up to five characters for SETUP and HCOPY.

Note: No extension can be specified, as this is automatically
assigned by the LSA1000.

QUERY SYNTAX FiLeNaMe? TYPE,<type>

<type> : = {ALL, C1, C2, TA, TB, TC, TD, SETUP, HCOPY}

RESPONSE FORMAT FiLeNaMe
TYPE,<type>,FILE,“<filename>”[,TYPE,<type>,FILE,“<filename>”...]

G AVAILABILITY Only available on LSA1000s fitted with the MC01, FD01 or HD01
options.

EXAMPLE The following command designates channel 1 waveform files to
be “TESTPNT6.xxx” where xxx is a numeric extension assigned
by the LSA1000:

FLNM TYPE,C1, FILE, ‘TESTPNT6’

RELATED COMMANDS DIRECTORY, FORMAT_CARD, FORMAT_FLOPPY,
FORMAT_HDD, DELETE_FILE

 The Commands and Queries

62

FUNCTION FIND_CTR_RANGE, FCRG
Command

DESCRIPTION The FIND_CTR_RANGE command automatically sets the center
and width of a histogram to best display the accumulated events.

COMMAND SYNTAX <function> : Find_Ctr_Range

<function> : = {TA,TB,TC,TD}

G AVAILABILITY Command only available on LSA1000s fitted with the WP03 or
DDM options.

EXAMPLE Assuming that Trace A (TA) has been defined as a histogram of one
of the custom parameters, the following example will determine the
best center and width and then rescale the histogram:

TA:FCR

RELATED COMMANDS DEFINE, PACU

The Commands and Queries

63

MASS STORAGE FORMAT_CARD, FCRDG
Command/Query

DESCRIPTION The FORMAT_CARD command formats the memory card
according to the PCMIA/JEIDA standard with a DOS partition.

The FORMAT_CARD? query returns the status of the card.

COMMAND SYNTAX Format_CaRD

QUERY SYNTAX Format_CaRD?

RESPONSE FORMAT Format_CaRD <card_status>[,<read/write>,<free_space>,
<card_size>,<battery_status>]

<card_status> : = {NONE, BAD, BLANK, DIR_MISSING, OK}
<read/write> : = {WP, RW}
<free_space> : = A decimal number giving the number of
bytes still available on the card
<card_size> : = A decimal number giving the total
number of bytes on the card.
<battery_status> : = {BAT_OK, BAT_LOW, BAT_BAD}

G AVAILABILITY Command available only on instruments fitted with the MC01
option.

EXAMPLE The following code will first format a memory card and then
verify its status:

FCRD
FCRD?

Response message:

FCRD OK,RW,130048,131072,BAT_OK

RELATED COMMANDS DIRECTORY

 The Commands and Queries

64

ADDITIONAL INFORMATION

Notation
BAD Bad card after formatting

BAT_BAD Bad battery or no battery

BAT_LOW Battery should be replaced

BAT_OK Battery is in order

BLANK Current directory empty

DIR_MISSING No subdirectory present. The directory
“LECROY1_DIR” will be automatically created with
the next “store” command

NONE No card

OK Card is correctly formatted

RW Read/Write authorized

WP Write protected

The Commands and Queries

65

MASS STORAGE FORMAT_FLOPPY, FFLPG
Command/Query

DESCRIPTION The FORMAT_FLOPPY command formats a floppy disk in the
Double Density or High Density format.

The FORMAT_FLOPPY? query returns the status of the floppy
disk.

COMMAND SYNTAX Format_FLoPpy [<type>]
<type> : = {DD, HD}
If no argument is supplied, HD is used by default.

QUERY SYNTAX Format_FLoPpy?

RESPONSE FORMAT Format_FloPpy <floppy_status>[,<read/write>,<free_space>,
<floppy_size>]

<floppy_status> : = {NONE, BAD, BLANK, DIR_MISSING, OK}
<read/write> : = {WP, RW}
<free_space> : = A decimal number giving the number of bytes
still available on the floppy.
<floppy_size> : = A decimal number giving the total number of
bytes on the floppy.

G AVAILABILITY Command only available on LSA1000s fitted with the FD01 option.

EXAMPLE The following code will first format a floppy in the Double
Density (720 kB) format and then verify its status:

FFLP DD

FFLP?

Response message:

FFLP OK,RW,728064,737280,

RELATED COMMANDS DIRECTORY

 The Commands and Queries

66

ADDITIONAL INFORMATION

Notation
BAD Bad floppy after formatting

BLANK Current directory empty

DD Double Density 720 kB formatted

DIR_MISSING No subdirectory present. The directory
“LECROY1_DIR” will be automatically created with
the next “store” command.

HD High Density 1.44 MB formatted

NONE No floppy

OK Floppy is correctly formatted

RW Read/Write authorized

WP Write protected

The Commands and Queries

67

MASS STORAGE FORMAT_HDD, FHDDG
Command/Query

DESCRIPTION The FORMAT_HDD command formats the removable hard disk
according to the PCMIA/JEIDA standard with a DOS partition.

The FORMAT_HDD? query returns the status of the hard disk.

COMMAND SYNTAX Format_HDD <type>

<type> : = {QUICK, FULL}

If no argument is supplied, QUICK will be used.

QUERY SYNTAX Format_HDD?

RESPONSE FORMAT Format_HDD <hdd_status>[,<read/write>,<free_space>,
<hdd_size>]

<hdd_status> : = {NONE, BAD, BLANK, DIR_MISSING, OK}
<read/write> : = {WP, RW}
<free_space> : = A decimal number giving the number of byte
still available on the hard disk
<hdd_size> : = A decimal number giving the total number of
bytes on the hard disk.

G AVAILABILITY Command only available only on instruments fitted with the
HD01 option.

EXAMPLE The following code will first format a hard disk and then verify its
status:

FHDD
FHDD?

Response message:

FHDD OK,RW,3076096,105744896

RELATED COMMANDS DIRECTORY

 The Commands and Queries

68

ADDITIONAL INFORMATION

Notation
BAD Bad hard disk after formatting

BLANK Current directory empty

DIR_MISSING No subdirectory present. The directory
“LECROY1_DIR” will be automatically created with
the next “store” command

NONE No hard disk

OK Hard disk is correctly formatted

RW Read/Write authorized

WP Write protected

The Commands and Queries

69

DISPLAY FULL_SCREEN, FSCR
Command/Query

DESCRIPTION The FULL_SCREEN command is used to control whether the
currently selected grid style is displayed in normal presentation
format or with a full-screen grid. In Full Screen format, the
waveform display areas are enlarged to the maximum possible
size.

The response to the FULL_SCREEN? query indicates whether
or not the display is operating in Full Screen presentation
format.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX FullSCReen <state>

<state> : = {ON, OFF}

QUERY SYNTAX FullSCReen?

RESPONSE FORMAT FullSCReen <state>

EXAMPLE The following instruction enables the Full Screen presentation
format:

FSCR ON

 The Commands and Queries

70

FUNCTION FUNCTION_RESET, FRST
Command

DESCRIPTION The FUNCTION_RESET command resets a waveform
processing function. The number of sweeps will be reset to zero
and the process restarted.

COMMAND SYNTAX <function> : Function_ReSeT

EXAMPLE <function> : = {TA ,TB ,TC ,TD }

Assuming that Trace A (TA) has been defined as the summed
average of Channel 1, the following instruction will restart the
averaging process:

TA:FRST

RELATED COMMANDS DEFINE, INR

The Commands and Queries

71

ACQUISITION GAIN_MODE, GMOD
Command/Query

DESCRIPTION: The GAIN_MODE command specifies the gain mode (gain range)
of the front end.

COMMAND SYNTAX: <channel>:Gain_MODe <mode>
<channel> : = {C1, C2}

<mode> := { LOW, MED, HI, AUTO }

QUERY SYNTAX: <channel>:Gain_MODe?

RESPONSE FORMAT: <channel>:Gain_MODe <mode>

REMARKS: The GAIN_MODE command specifies the gain mode (gain range)
of the front end.

The front end has three supported gain modes, the ratios of the
ranges supported by the low, medium and high gain modes are 1, 2
and 5 respectively.

When changing gain modes, the current vertical gain (VDIV) setting
is adapted by multiplying by the ratio of the old gain mode and the
new. Thus, if the gain mode was LOW and the VDIV was
100mV/div, if the gain mode is changed to HIGH, the VDIV is
multiplied by 1/5 to yield a new VDIV setting of 20mV/div.

RELATED COMMANDS: VOLT_DIV, VOLT_RANGE

 The Commands and Queries

72

ACQUISITION GLOBAL_BWL, GBWL
Command/Query

DESCRIPTION This turns on or off the Global Bandwidth Limit. When activated,
the Bandwidth Limit applies to all channels; when deactivated, a
Bandwidth Limit can be set individually for each channel (see
BWL, page 13). The response to the GLOBAL_BWL? query
indicates whether the Global Bandwidth Limit is on or off.

COMMAND SYNTAX Global_BWL <mode>

<mode> : = {OFF, ON}

QUERY SYNTAX Global_BWL?

RESPONSE FORMAT Global_BWL <mode>

EXAMPLE The following instruction deactivates the Global Bandwidth
Limit, allowing a Bandwidth Limit to be set individually for each
channel (using the BWL command syntax for individual
channels):

GBWL OFF

RELATED COMMANDS BANDWIDTH_LIMIT

The Commands and Queries

73

DISPLAY GRID
Command/Query

DESCRIPTION The GRID command specifies whether the display is in single (1),
dual (2), quad (4), XY or octal (8) grid mode.

The GRID? query returns the grid mode currently in use.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX GRID <grid>

<grid> : = {SINGLE, DUAL, QUAD, OCTAL, XYONLYG}

QUERY SYNTAX GRID?

RESPONSE FORMAT GRID <grid>

G AVAILABILITY <grid> := XYONLY available only when XY Display used.

EXAMPLE The following instruction sets the screen display to dual grid mode:

GRID DUAL

RELATED COMMANDS COLOR, INTENSITY, FULL_SCREEN

 The Commands and Queries

74

DISPLAY HOR_MAGNIFY, HMAG
Command/Query

DESCRIPTION The HOR_MAGNIFY command horizontally expands the selected
expansion trace by a specified factor. Magnification factors not
within the range of permissible values will be rounded off to the
closest legal value.

If multiple zoom is enabled, the magnification factor for all
expansion traces is set to the specified factor. If the specified
factor is too large for any of the expanded traces (depending on
their current source), it is reduced to an acceptable value and
only then applied to the traces.

The VAB bit (bit 2) in the STB register (see table on page 124)
is set when a factor outside the legal range is specified.

The HOR_MAGNIFY query returns the current magnification factor
for the specified expansion function.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX <exp_trace> : Hor_MAGnify <factor>
<exp_trace> : = {TA, TB, TC, TD}

<factor> : = 1 to 20000

QUERY SYNTAX <exp_source> : Hor_MAGnify?

RESPONSE FORMAT <exp_source> : Hor_MAGnify <factor>

EXAMPLE The following instruction horizontally magnifies Trace A (TA) by a
factor of 5:

TA:HMAG 5

RELATED COMMANDS DUAL_ZOOM, MULTI_ZOOM

The Commands and Queries

75

DISPLAY HOR_POSITION, HPOS
Command/Query

DESCRIPTION The HOR_POSITION command horizontally positions the
geometric center of the intensified zone on the source trace.
Allowed positions range from division 0 through 10. If the source
trace was acquired in sequence mode, horizontal shifting will only
apply to a single segment at a time.

If the multiple zoom is enabled, the difference between the
specified and the current horizontal position of the specified
trace is applied to all expanded traces. If this would cause the
horizontal position of any expanded trace to go outside the left
or right screen boundaries, the difference of positions is adapted
and then applied to the traces.

If the sources of expanded traces are sequence waveforms, and
the multiple zoom is enabled, the difference between the
specified and the current segment of the specified trace is
applied to all expanded traces. If this would cause the segment
of any expanded trace to go outside the range of the number of
source segments, the difference is adapted and then applied to
the traces.

The VAB bit (bit 2) in the STB register (see table on page 124)
is set if a value outside the legal range is specified.

The HOR_POSITION query returns the position of the geometric
center of the intensified zone on the source trace.

Note: Segment number 0 has the special meaning “Show All
Segments Unexpanded”.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX <exp_trace> : Hor_POSition <hor_position>,<segment>

<exp_trace> : = {TA, TB, TC, TD}
<hor_position> : = 0 to 10 DIV

<segment> : = 0 to max segments

Note 1: The suffix DIV is optional.

 The Commands and Queries

76

Note 2: The segment number is only relevant for waveforms
acquired in sequence mode; it is ignored in single waveform
acquisitions. When the segment number is set to 0, all segments
will be shown.

QUERY SYNTAX <exp_trace> : Hor_POSition?

RESPONSE FORMAT <exp_trace> : Hor_POSition <hor_position>[,<segment>]

Note 3: The segment number is only given for sequence
waveforms.

EXAMPLE The following instruction positions the center of the intensified zone
on the trace currently viewed by Trace A (TA) at division 3:

TA:HPOS 3

RELATED COMMANDS DUAL_ZOOM, MULTI_ZOOM

The Commands and Queries

77

MISCELLANEOUS *IDN?
Query

DESCRIPTION The *IDN? query is used for identification purposes. The
response consists of four different fields providing information
on the manufacturer, the LSA1000 model, the serial number and
the firmware revision level.

QUERY SYNTAX *IDN?

RESPONSE FORMAT *IDN LECROY,<model>,<serial_number>,<firmware_level>

<model> : = A six- or seven-character model identifier
<serial_number> : = A nine- or 10-digit decimal code
<firmware_level> : = two digits giving the major release level

followed by a period, then one digit giving
the minor release level followed by a
period and a single-digit update level
(xx.y.z)

EXAMPLE This example issues an identification request to the LSA1000:

*IDN?

Response message:
*IDN LECROY,LSA1000,LSA100000000,01.0.0

 The Commands and Queries

78

STATUS INE
Command/Query

DESCRIPTION The INE command sets the Internal state change Enable
register (INE). This command allows one or more events in the
INR register to be reflected in the INB summary message bit (bit
0) of the STB register. For an overview of the INR defined
events, refer to the table next page.

The INE? query reads the contents of the INE register.

COMMAND SYNTAX INE <value>

<value> : = 0 to 65535

QUERY SYNTAX INE?

RESPONSE FORMAT INE <value>

EXAMPLE The following instruction allows the INB bit to be set whenever a
screen dump has finished (bit 1, i.e. decimal 2), or a waveform
has been acquired (bit 0, i.e. decimal 1), or both of these.
Summing these two values yields the INE mask 2+1=3.

INE 3

RELATED COMMANDS INR

The Commands and Queries

79

STATUS INR?
Query

DESCRIPTION The INR? query reads and clears the contents of the INternal
state change Register (INR). The INR register (table below)
records the completion of various internal operations and state
transitions.

Internal State Register Structure (INR)
Bit Bit Value Description

15...14 0 Reserved for future use

13 8192 1 Trigger is ready

12 4096 1 Pass/Fail test detected desired outcome

11 2048 1 Waveform processing has terminated in Trace D

10 1024 1 Waveform processing has terminated in Trace C

9 512 1 Waveform processing has terminated in Trace B

8 256 1 Waveform processing has terminated in Trace A

7 128 1 A memory card, floppy or hard disk exchange has been detectedG

6 64 1 Memory card, floppy or hard disk has become full in “AutoStore Fill”
modeG

5 32 0 Reserved for LeCroy use

3 8 1 A time-out has occurred in a data block transfer

2 4 1 A return to the local state is detected

0 1 1 A new signal has been acquired

QUERY SYNTAX INR?

RESPONSE FORMAT INR <state>
<state> : = 0 to 65535

 The Commands and Queries

80

G AVAILABILITY These bits only available on LSA1000s fitted with MC01, FD01, or
HD01 options.

EXAMPLE The following instruction reads the contents of the INR register:

INR?

Response message:

INR 1026

i.e. waveform processing in Function C and a screen dump have
both terminated.

RELATED COMMANDS ALL_STATUS, *CLS, INE

The Commands and Queries

81

DISPLAY INTENSITY, INTS
Command/Query

DESCRIPTION The INTENSITY command sets the intensity level of the grid or the
trace/text.

The intensity level is expressed as a percentage (PCT). A level
of 100 PCT corresponds to the maximum intensity whilst a level
of 0 PCT sets the intensity to its minimum value.

The response to the INTENSITY? query indicates the grid and trace
intensity levels.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX INTenSity GRID,< value>, TRACE,<value>

<value> : = 0 to 100 [PCT]

Note 1: Parameters are grouped in pairs. The first of the pair
names the variable to be modified, whilst the second gives the
new value to be assigned. Pairs may be given in any order and
be restricted to those variables to be changed.

Note 2: The suffix PCT is optional.

QUERY SYNTAX INTenSity?

RESPONSE FORMAT INTenSity TRACE,<value>,GRID,<value>

EXAMPLE The following instruction enables remote control of the intensity, and
changes the grid intensity level to 75%:

INTS GRID,75

 The Commands and Queries

82

WAVEFORM TRANSFER INSPECT?, INSP?
Query

DESCRIPTION The INSPECT? query allows the user to read parts of an
acquired waveform in intelligible form. The command is based
on the explanation of the format of a waveform given by the
template (use the query TEMPLATE? to obtain an up-to-date
copy).

Any logical block of a waveform can be inspected using
this query by giving its name enclosed in quotes as the first
(string) parameter (see the template).

The special logical block named WAVEDESC may also be
inspected in more detail. By giving the name of a variable in the
block WAVEDESC, enclosed in quotes as the first (string)
parameter, it is possible to inspect only the actual value of that
variable. See Chapter 4 for more on INSPECT?.

Notation
BYTE raw data as integers (truncated to 8 (m.s.b.†)
FLOAT normalized data (gain, offset applied) as floating point

numbers (gives measured values in volts or units)
WORD raw data as integers (truncated to 16 m.s.b.)

QUERY SYNTAX <trace> : INSPect? ‘<string>’[,<data_type>]

<trace> : = {TA, TB, TC, TD, M1, M2, M3, M4, C1, C2}

<string> : = A valid name of a logical block or a valid name
of a variable contained in block WAVEDESC (see
the Template).

<data_type> : = {BYTE, WORD, FLOAT}

Note: The optional parameter <data_type> applies only for
inspecting the data arrays. It selects the representation of the
data. The default <data_type> is FLOAT.

† most significant bits

The Commands and Queries

83

RESPONSE FORMAT <trace> : INSPect “<string>”
<string> : = A string giving name(s) and value(s) of a logical
block or a variable.

EXAMPLES (GPIB) The following instruction reads the value of the timebase at
which the last waveform in Channel 1 was acquired:
C1:INSP? ‘TIMEBASE’

Response message:

C1:INSP “TIMEBASE: 500 US/DIV”

The following command reads the entire contents of the
waveform descriptor block:

C1:INSP? ‘WAVEDESC’

RELATED COMMANDS TEMPLATE, WAVEFORM_SETUP

 The Commands and Queries

84

STATUS *IST?
Query

DESCRIPTION The *IST? (Individual STatus) query reads the current state of
the IEEE 488.1-defined “ist” local message. The “ist” individual
status message is the status bit sent during a parallel poll
operation.

QUERY SYNTAX *IST?

RESPONSE FORMAT *IST <value>
<value> : = 0 or 1

EXAMPLE The following instruction cause the contents of the IST bit to be
read:

*IST?

Response message

*IST 0

RELATED COMMANDS *PRE

The Commands and Queries

85

ACQUISITION MEMORY_SIZE, MSIZ
Command/Query

DESCRIPTION MEMORY_SIZE allows selection of the maximum memory
length used for acquisition. Reducing the number of data
points results in faster throughput.

The MEMORY_SIZE? query returns the current maximum
memory length used to capture waveforms. When the
optional suffix NUM is used with the query, the response will
be returned in standard numeric format.

COMMAND SYNTAX Memory_SIZe <size>

<size> : = {500, 1000, 2500, 5000, 10K, 25K, 50K,
100K, 250K, 500K, 1M, 2M, 4M, 8M}

 Note: The instrument will adapt to the closest valid <size> or
numerical <value> according to available channel memory.

QUERY SYNTAX Memory_SIZe?

RESPONSE FORMAT Memory_SIZe <size>

EXAMPLE The following will set the LSA1000 to acquire at most 10 000
data samples per acquisition:

MSIZ 10K

RELATED COMMANDS TDIV, COMB?

 The Commands and Queries

86

DISPLAY MULTI_ZOOM, MZOM
Command/Query

DESCRIPTION By setting MULTI_ZOOM ON, the horizontal magnification and
positioning controls apply to all expanded traces simultaneously.
This command is useful if the contents of all expanded traces are to
be examined at the same time.

The MULTI_ZOOM? query indicates whether multiple zoom is
enabled or not.

Note: This command has the same effect as DUAL_ZOOM.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX Multi_ZOoM <mode>

<mode> : = {ON, OFF}

QUERY SYNTAX Multi_ZOoM?

RESPONSE FORMAT Multi_ZOoM <mode>

EXAMPLE The following example turns the multiple zoom on:

MZOM ON

RELATED COMMANDS HOR_MAGNIFY, HOR_POSITION, DUAL_ZOOM

The Commands and Queries

87

ACQUISITION OFFSET, OFST
Command/Query

DESCRIPTION The OFFSET command allows adjustment of the vertical offset
of the specified input channel.

The maximum ranges depend on the fixed sensitivity setting. If
an out-of-range value is entered, the LSA1000 is set to the
closest possible value and the VAB bit (bit 2) in the STB register
is set.

The OFFSET? query returns the DC offset value of the specified
channel.

COMMAND SYNTAX <channel> : OFfSeT <offset>
<channel> : = {C1, C2}
<offset> : = Refer to model’s specifications.

Note: The suffix V is optional.

QUERY SYNTAX <channel> : OFfSeT?

RESPONSE FORMAT <channel> : OFfSeT <offset>

EXAMPLE The following command sets the offset of Channel 2 to -3 V:

C2:OFST -3V

 The Commands and Queries

88

STATUS *OPC
Command/Query

DESCRIPTION The *OPC (OPeration Complete) command sets to true the OPC
bit (bit 0) in the standard Event Status Register (ESR). This
command has no other effect on the operation of the LSA1000
because the instrument starts parsing a command or query only
after it has completely processed the previous command or
query.

The *OPC? query always responds with the ASCII character “1”
because the LSA1000 only responds to the query when the
previous command has been entirely executed.

COMMAND SYNTAX *OPC

QUERY SYNTAX *OPC?

RESPONSE FORMAT *OPC 1

RELATED COMMANDS *WAI

The Commands and Queries

89

MISCELLANEOUS *OPT?
Query

DESCRIPTION The *OPT? query identifies LSA1000 options, i.e. additional
firmware or hardware options. The response consists of a series
of response fields listing all the installed options.

QUERY SYNTAX *OPT?

RESPONSE FORMAT *OPT <option_1>,<option_2>,..,<option_N>
<option_n> : = A three- or four-character ASCII string

Note: If no option is present, the character 0 will be returned

EXAMPLE The following queries the installed options:

*OPT?

If, for example, the waveform processing options WP01 and
WP02 are installed, the response will be returned as:

*OPT WP01,WP02

Response message if no options are installed:

*OPT 0

 The Commands and Queries

90

ADDITIONAL INFORMATION (not all options are necessarily available)

Notation
CKTR CKTRIG Clock-Trigger-Ext. ref. Option
DDFA Disk Drive Failure Analysis Option

DDM Disk Drive Measurements Option

ECL External Trigger -- ECL levels

FD01 Floppy Disk Option

HD01 Hard Disk Option

JTA Jitter and Timing Analysis Option

ORM Optical Recording Measurements Option

PMT Power Measurement Tools

PRML PRML Measurements Option

MC01 Memory Card Option

TTL External Trigger -- TTL levels

WP01 Waveform Processing Option WP01

WP02 Waveform Processing Option WP02

WP03 Waveform Processing Option WP03

The Commands and Queries

91

CURSOR PARAMETER_CLR, PACL
Command

DESCRIPTION The PARAMETER_CLR command clears all the current
parameters from the five-line list used in the Custom and
Pass/Fail modes.

Note: This command has the same effect as the command
PASS_FAIL_CONDITION, given without any arguments.

COMMAND SYNTAX PArameter_CLear

RELATED COMMANDS PARAMETER_DELETE, PARAMETER_VALUE,
PASS_FAIL_CONDITION

 The Commands and Queries

92

CURSOR PARAMETER_CUSTOM, PACU
Command/Query

DESCRIPTION The PARAMETER_CUSTOM command controls the parameters
that have customizable qualifiers, (for example, DTLEV or
RLEV) and may also be used to assign any parameter for
histogramming.

Note: The measured value of a parameter setup with PACU may
be read using PAVA?

COMMAND SYNTAX PArameter_Custom <line>,<parameter>,<qualifier>[,<qualifier>,...]

<line> : = 1 to 5
<parameter> : = {a parameter from the table below or any
parameter listed in the PAVA? command}
<qualifier> : = Measurement qualifier(s) specific to each
<param>. See below.

<param> definition <qualifier> list
Standard Custom Parameters (all parameters listed are not necessarily available)

DDLY delta delay <source1>,<source2>

DTLEV delta time at level <source1>,<slope1>,<level1>,<source2>,<slope2>,<level2>,
<hysteresis>

FLEV fall at level <source>,<high>,<low>

PHASE phase difference <source1>,<edge1>,<level1>,<source2>,<edge2>,<level2>,
<hysteresis>,<angular unit>

RLEV rise at level <source>,<low>,<high>

TLEV time at level <source>,<slope>,<level>,<hysteresis>
Parameters available on instruments equipped with WP03 or DDM processing firmware

FWXX full width at xx% of max <source>,<threshold>

PCTL percentile <source>,<threshold>

XAPK x position at peak <source>,<rank>

The Commands and Queries

93

<param> definition <qualifier> list
Parameters available on instruments equipped with DDM processing firmware

LBASE local base <source>,<hysteresis>

LBSEP local baseline separation <source>,<hysteresis>

LMAX local maximum <source>,<hysteresis>

LMIN local minimum <source>,<hysteresis>

LNUM number of local events <source>,<hysteresis>

LPP local peak to peak <source>,<hysteresis>

LTBE local time between events <source>,<hysteresis>

LTBP local time between peaks <source>,<hysteresis>

LTBT local time between troughs <source>,<hysteresis>

LTMN local time at minima <source>,<hysteresis>

LTMX local time at maxima <source>,<hysteresis>

LTOT local time over threshold <source>,<hysteresis>,<threshold>

LTPT local time peak to trough <source>,<hysteresis>

LTTP local time trough to peak <source>,<hysteresis>

LTUT local time under threshold <source>,<hysteresis>,<threshold>

NBPH narrow band phase <source>,<freq>

NBPW narrow band power <source>,<freq>

OWRITE overwrite <source 1>,<source 2>,<freq>

PW50 pulse width 50 <source>,<hysteresis>

PW50NEG pulse width 50 for troughs <source>,<hysteresis>

PW50POS pulse width 50 for peaks <source>,<hysteresis>

RES resolution <source 1>,<source 2>,<hysteresis>

TAA track average amplitude <source>,<hysteresis>

TAANEG track average amplitude for
troughs

<source>,<hysteresis>

TAAPOS track average amplitude for
peaks

<source>,<hysteresis>

Parameters available on instruments equipped with PRML processing firmware
ACSN auto correlation signal to noise <source>,<length>

NLTS non-linear transition shift <source>,<length>,<delay>

 The Commands and Queries

94

Where: <sourceN> : = {C1, C2, TA, TB, TC, TD}
<slopeN> : = {POS, NEG, FIRST}
<levelN>, <low>, <high> : = 1 to 99 if level is specified in
percent (PCT), or
<levelN>, <low>, <high> : = Level in <sourceN> in the units of
the waveform.
<delay> : = − 100 PCT to 100 PCT
<freq> : = 10 to 1e9 Hz (Narrow Band center frequency).
<hysteresis> : = 0.01 to 8 divisions
<length> : = 1e− 9 to 0.001 seconds
<rank> : = 1 to 100
<threshold> : = 0 to 100 percent
<angular unit> = {PCT, DEG, RAD}

QUERY SYNTAX PArameter_CUstom? <line>

RESPONSE FORMAT PArameter_Custom
<line>,<parameter>,<qualifier>[,<qualifier>,...]

EXAMPLE 1 DTLEV

Command Example PACU 2,DTLEV,C1,POS,345E − 3,C2,NEG,− 789E− 3

Query/Response Examples PACU? 2 returns:
PACU 2,DTLEV,C1,POS,345E − 3,C2,NEG,− 789E− 3
PAVA? CUST2 returns:
C2:PAVA CUST2,789 NS

EXAMPLE 2 DDLY

Command Example PACU 2,DDLY,C1,C2

Query/Response Examples PACU? 2 returns:
PACU 2,DDLY,C1,C2
PAVA? CUST2 returns:
C2:PAVA CUST2,123 NS

The Commands and Queries

95

EXAMPLE 3 RLEV

Command Example PACU 3,RLEV,C1,2PCT,67PCT

Query/Response Examples PACU? 3 returns:
PACU 3,RLEV,C1,2PCT,67PCT
PAVA? CUST3 returns:
C1:PAVA CUST3,23 MS

EXAMPLE 4 FLEV

Command Example PACU 3,FLEV,C1,345E − 3,122E− 3

Query/Response Examples PACU? 3 returns:
PACU 3,FLEV,C1,345E − 3,122E− 3
PAVA? CUST3 returns:
C1:PAVA CUST3,23 MS

RELATED COMMANDS PARAMETER_DELETE, PARAMETER_VALUE,
PASS_FAIL_CONDITION

 The Commands and Queries

96

CURSOR PARAMETER_DELETE, PADL
Command

DESCRIPTION The PARAMETER_DELETE command deletes a parameter at a
specified line from the list of parameters used in the Custom and
Pass/Fail modes.

Notation
1 line 1 of Custom or Pass/Fail display

2 line 2 of Custom or Pass/Fail display

3 line 3 of Custom or Pass/Fail display

4 line 4 of Custom or Pass/Fail display

5 line 5 of Custom or Pass/Fail display

COMMAND SYNTAX PArameter_DeLete <line>

<line> : = {1, 2, 3, 4, 5}

Note: This command has the same effect as the command
PASS_FAIL_CONDITION <line>, given without any further
arguments.

EXAMPLE The following instruction deletes the third test condition in the
list:

PADL 3

RELATED COMMANDS PARAMETER_CLR, PARAMETER_VALUE,
PASS_FAIL_CONDITION

The Commands and Queries

97

CURSOR PARAMETER_STATISTICS?, PAST?
Query

DESCRIPTION The PARAMETER_STATISTICS? query returns the current
values of statistics for the specified pulse parameter mode and
the result type, for all five lines of the pulse parameters display.

Notation
AVG average

CUST custom parameters

HIGH highest value

HPAR horizontal standard parameters

LOW lowest value

PARAM parameter definition for each line

SIGMA sigma (standard deviation)

SWEEPS number of sweeps accumulated for each line

VPAR vertical standard parameters

QUERY SYNTAX PArameter_STatistics? <mode>, <result>
<mode> : = {CUST, HPAR, VPAR}
<result> : = {AVG, LOW, HIGH, SIGMA, SWEEPS, PARAM}

Note: If keyword PARAM is specified, the query returns the list
of the five pairs <parameter_name>,<source>.

EXAMPLE The following query reads the average values of the five
standard vertical parameters:

PAST? VPAR, AVG

RESPONSE FORMAT PAST VPAR, AVG, 13V, 26V, 47V, 1V, 0V

RELATED COMMANDS PARAMETER_VALUE

 The Commands and Queries

98

CURSOR PARAMETER_VALUE?, PAVA?
Query

DESCRIPTION The PARAMETER_VALUE query returns the current value(s) of the
pulse waveform parameter(s) and mask tests for the specified trace.
Traces do not need to be displayed or selected to obtain the values
measured by the pulse parameters or mask tests.

Standard Parameters
ALL all parameters DUTY duty cycle OVSP positive overshoot
AMPL amplitude FALL falltime PER period
AREA area FALL82 fall 80 to 20% PKPK peak-to-peak
BASE base FREQ frequency PNTS points
CMEAN mean for cyclic

waveform
FRST first point RISE risetime

CMEDI median for cyclic
waveform

LAST last point RISE28 rise 20 to 80%

CRMS root mean square for
cyclic part of waveform

MAX maximum RMS root mean square

CSDEV standard deviation for
cyclic part of waveform

MEAN mean SDEV standard deviation

CYCL cycles MEDI median value TOP top
DLY delay MIN minimum WID width
DUR duration of acquisition OVSN negative overshoot

Parameters Available on Instruments with WP03 or DDM Processing Firmware
AVG average of distribution HMEDI median of a histogram PKS number of peaks
DATA data values HRMS histogram rms value RANGE range of distribution
FWHM full width at half max HTOP histogram top value SIGMA sigma of distribution
HAMPL histogram amplitude LOW low of distribution TOTP total population
HBASE histogram base MAXP maximum population
HIGH high of histogram MODE mode of distribution

Custom Parameters Defined using PARAMETER_CUSTOM Command‡
CUST1 CUST2 CUST3 CUST4 CUST5

‡ The numbers in the terms CUST1, CUST2, CUST3, CUST4 and CUST5 refer to
the line numbers of the selected custom parameters.

The Commands and Queries

99

Parameter Computation States
AV averaged over several (up to 100)

periods
OF signal partially in overflow

GT greater than given value OK deemed to be determined without
problem

IV invalid value (insufficient data
provided)

OU signal partially in overflow and underflow

LT less than given value PT window has been period truncated

NP no pulse waveform UF signal partially in underflow

Mask Test Names
ALL_IN all points of waveform inside mask

(TRUE = 1, FALSE = 0)
SOME_IN some points of waveform inside mask

(TRUE = 1, FALSE = 0)

ALL_OUT all points of waveform outside mask
(TRUE = 1, FALSE = 0)

SOME_OUT some points of waveform outside mask
(TRUE = 1, FALSE = 0)

QUERY SYNTAX <trace> : PArameter_VAlue? [<parameter>,...,<parameter>]
<trace> : = {TA, TB, TC, TD, C1, C2}
<parameter> : = See table of parameter names, previous page.

Alternative forms of query for mask tests:
<trace> : PArameter_VAlue? <old_mask_test>
<trace> : PArameter_VAlue? <mask_test>, <mask>
<mask_test> : = {ALL_IN, SOME_IN, ALL_OUT, SOME_OUT}
<mask> : = {TA, TB, TC, TD}

RESPONSE FORMAT <trace> : PArameter_VAlue <parameter>,<value>,
<state> [,...,<parameter>,<value>,<state>]
<value> : = A decimal numeric value
<state> : = {OK, AV, PT, IV, NP, GT, LT, OF, UF, OU}

Note: If <parameter> is not specified, or is equal to ALL, all the
standard voltage and standard time parameters followed by their
values and states are returned.

 The Commands and Queries

100

EXAMPLE The following query reads the risetime of Trace B (TB):

TB:PAVA? RISE

Response message:

TB:PAVA RISE,3.6E − 9S,OK

RELATED COMMANDS CURSOR_MEASURE, CURSOR_SET,
PARAMETER_CUSTOM, PARAMETER_STATISTICS

The Commands and Queries

101

CURSOR PASS_FAIL_CONDITION, PFCO
Command/Query

DESCRIPTION The PASS_FAIL_CONDITION command adds a Pass/Fail test
condition or a custom parameter at the specified line on the
Pass/Fail or Custom Parameter display.

The PASS_FAIL_CONDITION? query indicates the current
Pass/Fail test setup or the current selection of custom
parameters at the specified line.

Note 1: Up to five test conditions (or custom parameters) can be
specified at five different display lines on the screen. The
command PASS_FAIL_CONDITION deals with one line at a
time.

Notation
GT greater than LT lower than

COMMAND SYNTAX Pass_Fail_Condition
[<line>,<trace>,<parameter>[,<rel_op> [,<ref_value>]]]
<line> : = {1,2,3,4,5}
<trace> : = {TA, TB, TC, TD, C1, C2}
<parameter> : = See tables of parameter names on pages 92

and 98.
<rel_op> : = {GT, LT}
<ref_value> : = − 1e15 to +1e15

Note 2: The PFCO command with no arguments (i.e. “PFCO”)
deletes all conditions. The PFCO command with a single
argument (i.e. “PFCO <line>”) deletes the condition at <line>.

Note 3: Old mask test keywords ALLI and ANYO imply testing of
<trace> against the mask waveform TD. Old mask test
keywords INSIDE and OUTSIDE are equivalent to ALL_IN and
SOME_OUT; they are only supported for compatibility with
former versions.

Alternative form of command for mask tests:
Pass_Fail_COndition [<line>,<trace>,<mask_test>,<mask>]

<mask_test> : = {ALL_IN, SOME_IN, ALL_OUT, SOME_OUT}

<mask> : = {TA, TB, TC, TD}

 The Commands and Queries

102

QUERY SYNTAX PFCO? <line>

RESPONSE FORMAT PFCO <line>,<trace>,<parameter>,<rel_op>,<ref_value>

Alternative form of response for mask tests:
PFCO <line>,<trace>,<mask_test>,<mask>

EXAMPLE The following instruction sets the first test condition in the list to
be “frequency on Channel 1 lower than 10 kHz”:

PFCO 1,C1,FREQ,LT,10000

RELATED COMMANDS CURSOR_MEASURE, CURSOR_SET,
PASS_FAIL_COUNTER, PASS_FAIL_DO, PASS_FAIL_MASK,
PARAMETER_VALUE

The Commands and Queries

103

CURSOR PASS_FAIL_COUNTER, PFCT
Command/Query

DESCRIPTION The PASS_FAIL_COUNTER command resets the
Passed/Failed acquisitions counters. The
PASS_FAIL_COUNTER? query returns the current counts.

COMMAND SYNTAX Pass_Fail_CounTer

QUERY SYNTAX Pass_Fail_CounTer?

RESPONSE FORMAT Pass_Fail_CounTer <pass/fail>,<value>,OF,<value>

<value> : = 0 to 999999

<pass/fail> : = {PASS, FAIL}

EXAMPLE The following query reads the counters:

PFCT?

Response message:

PFCT PASS, 8, OF, 9

RELATED COMMANDS CURSOR_MEASURE, CURSOR_SET, PASS_FAIL_DO,
PASS_FAIL_MASK, PARAMETER_VALUE

 The Commands and Queries

104

CURSOR PASS_FAIL_DO, PFDO
Command/Query

DESCRIPTION The PASS_FAIL_DO command defines the desired outcome
and the actions that have to be performed by the LSA1000 after
a Pass/Fail test. The PASS_FAIL_DO? query indicates which
actions are currently selected.

Notation
BEEPG emit a beep

PULSG emit a pulse on the CAL connector

SCDP make a hard copy

STO store in memory or on storage media

STOP stop acquisition

COMMAND SYNTAX Pass_Fail_DO [<outcome>[,<act>[,<act>...]]]

<outcome> : = {PASS,FAIL}
<act> : = {STOP, SCDP, STO}

Note 2: The PFDO command with no arguments (i.e. “PFDO”)
deletes all actions.

Note 3: The STO command performs the store operation.

Note 4: After every pass or fail detected, the instrument sets the
INR bit 12.

QUERY SYNTAX Pass_Fail_DO?

The Commands and Queries

105

RESPONSE FORMAT Pass_Fail_DO [<pass_fail>[,<act>[,<act>...]]]

G AVAILABILITY The BEEP command is accepted only on models equipped with the
CLBZ hardware option.

The PULS command is accepted only on models equipped with
the CKIO software option.

EXAMPLE This following instruction forces the LSA1000 to stop acquiring
when the test passes:

PFDO PASS,STOP

RELATED COMMANDS BUZZER, CURSOR_MEASURE, CURSOR_SET, INR,
PARAMETER_VALUE, PASS_FAIL_COUNTER,
PASS_FAIL_MASK

 The Commands and Queries

106

CURSOR PASS_FAIL_MASK, PFMS
Command

DESCRIPTION The PASS_FAIL_MASK command generates a tolerance mask
around a chosen trace and stores the mask in the selected
memory.

COMMAND SYNTAX Pass_Fail_MaSk [<trace>[,<htol>[,<vtol>[,<mask>]]]]
<trace> : = {TA, TB, TC, TD, M1, M2, M3, M4, C1, C2}
<htol> : = 0.0 to 5.0
<vtol> : = 0.0 to 4.0
<mask> : = {M1, M2, M3, M4}

Note: if any arguments are missing, the previous settings will be
used.

The alternative form of command:
Pass_Fail_MaSk INVT [,<mask>]
inverts the mask in the selected mask memory. If <mask> is
missing, M4 is implied.

EXAMPLE The following instruction generates a tolerance mask around the
Channel 1 trace and stores it in M2:

PASS_FAIL_MASK C1,0.2,0.3,M2

RELATED COMMANDS PASS_FAIL_DO, PARAMETER_VALUE

The Commands and Queries

107

CURSOR PASS_FAIL_STATUS?, PFST?
Query

DESCRIPTION The PASS_FAIL_STATUS query returns the status of the
pass/fail test for a given line number.

QUERY SYNTAX Pass_Fail_STatus? <line>

<line> : = {1, 2, 3, 4, 5}

RESPONSE FORMAT Pass_Fail_STatus <line>,<state>

<state> : = {TRUE, FALSE}

EXAMPLE The following queries the state of the pass/fail test condition
specified for line 3.

PFST? 3

RELATED COMMANDS PASS_FAIL_DO, PASS_FAIL_CONDITION,
PARAMETER_VALUE

 The Commands and Queries

108

CURSOR PER_CURSOR_SET, PECS
Command/Query

DESCRIPTION The PER_CURSOR_SET command allows the user to position
any one of the six independent cursors at a given location. The
position of the cursor can be modified or queried.

The PER_CURSOR_SET? query indicates the current position
of the cursor(s).

The vertical cursor positions are the same as those controlled by
the CURSOR_SET command.

Notation
HABS horizontal absolute VABS vertical absolute

HDIF horizontal difference VDIF vertical difference

HREF horizontal reference VREF vertical reference

COMMAND SYNTAX <trace> : PEr_Cursor_Set <cursor>,
<position>[,<cursor>,<position>,...,<cursor>,<position>

trace> : = {TA, TB, TC, TD, C1, C2}
<cursor> : = {HABS, HDIF, HREF, VABS, VDIF, VREF}
<position> : = 0 to 10 DIV (horizontal), − 29.5 to 29.5 DIV

(vertical)

Note 1: The suffix DIV is optional.

Note 2: Parameters are grouped in pairs. The first of the pair
names the variable to be modified, whilst the second gives the
new value to be assigned. Pairs may be in any order and be
restricted to those variables to be changed.

QUERY SYNTAX <trace> : PEr_Cursor_Set? <cursor>[,<cursor,...,<cursor>]

 <cursor> : = {HABS, HDIF, HREF, VABS, VDIF, VREF, ALL}

Note 3: If <cursor> is not specified, ALL will be assumed. If the
position of a cursor cannot be determined in a particular
situation, its position will be indicated as UNDEF.

The Commands and Queries

109

RESPONSE FORMAT PEr_Cursor_Set <cursor>,<position>[,<cursor>,<position>,...,
<cursor>,<position>

EXAMPLE The following code positions the HREF and HDIF cursors at
+2.6 DIV and +7.4 DIV respectively, using Channel 2 as a
reference:

C2:PECS HREF,2.6 DIV,HDIF,7.4DIV

RELATED COMMANDS CURSOR_MEASURE, CURSOR_SET, PERSIST,
PER_CURSOR_VALUE,

 The Commands and Queries

110

CURSOR PER_CURSOR_VALUE?, PECV?
Query

DESCRIPTION The PER_CURSOR_VALUE? query returns the values
measured by the cursors specified below while in Persistence
Mode.

Notation
HABS horizontal absolute VABS vertical absolute

HREL horizontal relative VREL vertical relative

QUERY SYNTAX <trace> : PEr_Cursor_Value? <cursor>[,<cursor>,...,<cursor>]

<trace> : = {TA, TB, TC, TD, C1, C2}
<cursor> : = {HABS, HREL, VABS, VREL, ALL}

Note: If <cursor> is not specified, ALL will be assumed.

RESPONSE FORMAT <trace> : PEr_Cursor_Value <cursor>,
<value>[,<cursor>,<value>,...,<cursor>,<value>]

EXAMPLE The following code returns the value measured with the vertical
relative cursor on Channel 1:

C1:PECV? VREL

Response message:

C1:PECV VREL,56 MV

RELATED COMMANDS CURSOR_MEASURE, PERSIST, PER_CURSOR_SET

The Commands and Queries

111

DISPLAY PERSIST, PERS
Command/Query

DESCRIPTION The PERSIST command enables or disables the persistence
display mode.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX PERSist <mode>

<mode> : = {ON, OFF}

QUERY SYNTAX PERSist?

RESPONSE FORMAT PERSist <mode>

EXAMPLE The following code turns the persistence display ON:

PERS ON

RELATED COMMANDS PERSIST_COLOR, PERSIST_LAST, PERSIST_SAT,
PERSIST_SETUP

 The Commands and Queries

112

DISPLAY PERSIST_COLOR, PECL
Command/Query

DESCRIPTION The PERSIST_COLOR command controls the color rendering
method of persistence traces.

The response to the PERSIST_COLOR? query indicates the
color rendering method, Analog Persistence or Color Graded
Persistence.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX PErsist_CoLor <state>

<state> : = {ANALOG, COLOR_GRADED}

QUERY SYNTAX PErsist_CoLor?

RESPONSE FORMAT PErsist_CoLor <state>

EXAMPLE The following instruction sets the persistence trace color to an
intensity-graded range of the selected trace color:

PECL ANALOG

RELATED COMMANDS COLOR, COLOR_SCHEME, PERSIST, PERSIST_LAST,
PERSIST_SAT, PERSIST_SETUP

The Commands and Queries

113

DISPLAY PERSIST_LAST, PELT
Command/Query

DESCRIPTION The PERSIST_LAST command controls whether or not the last
trace drawn in a persistence data map is shown.

The response to the PERSIST_LAST? query indicates whether
the last trace is shown within its persistence data map.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX PErsist_LasT <state>

<state> : = {ON, OFF}

QUERY SYNTAX PErsist_LasT?

RESPONSE FORMAT PErsist_LasT <state>

EXAMPLE The following instruction ensures the last trace is visible within its
persistence data map:

PELT ON

RELATED COMMANDS PERSIST, PERSIST_COLOR, PERSIST_SAT, PERSIST_SETUP

 The Commands and Queries

114

DISPLAY PERSIST_SAT, PESA
Command/Query

DESCRIPTION The PERSIST_SAT command sets the level at which the color
spectrum of the persistence display is saturated.

The level is specified in terms of percentage (PCT) of the total
persistence data map population. A level of 100 PCT
corresponds to the color spectrum being spread across the
entire depth of the persistence data map. At lower values, the
spectrum will saturate (brightest value) at the specified
percentage value. The PCT is optional.

The response to the PERSIST_SAT? query indicates the
saturation level of the persistence data maps.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX PErsist_SAt <trace>,<value> [<trace>,<value>]

<trace> : = { C1, C2, C3, C4, TA, TB, TC, TD, ALL}

<value> : = 0 to 100 PCT

Note: The suffix PCT is optional.

QUERY SYNTAX PErsist_SAt?

RESPONSE FORMAT PErsist_SAt <trace>,<value>

EXAMPLE The following instruction sets the saturation level of the persistence
data map for channel 3 to be 60%, i.e. 60% of the data points will be
displayed with the color spectrum, with the remaining 40% saturated
in the brightest color:

PESA C3,60

RELATED COMMANDS PERSIST, PERSIST_COLOR, PERSIST_PERS,
PERSIST_SETUP

The Commands and Queries

115

DISPLAY PERSIST_SETUP, PESU
Command/Query

DESCRIPTION The PERSIST_SETUP command selects the persistence duration
of the display, in seconds, in persistence mode. In addition, the
persistence can be set either to all traces or only the top two on the
screen.

The PERSIST_SETUP? query indicates the current status of the
persistence.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX PErsist_SetUp <time>,<mode>

<time> : = {0.5, 1, 2, 5, 10, 20, infinite}

<mode> : = {TOP2, ALL}

QUERY SYNTAX PErsist_SetUp?

RESPONSE FORMAT PErsist_SetUp <time>,<mode>

EXAMPLE The following instruction sets the variable persistence at 10 seconds
on the top two traces:

PESU 20,TOP2

RELATED COMMANDS PERSIST, PERSIST_COLOR, PERSIST_PERS, PERSIST_SAT

 The Commands and Queries

116

STATUS *PRE
Command/Query

DESCRIPTION The *PRE command sets the PaRallel poll Enable register
(PRE). The lowest eight bits of the Parallel Poll Register (PPR)
are composed of the STB bits. The *PRE command allows the
user to specify which bit(s) of the parallel poll register will affect
the ‘ist’ individual status bit.

The *PRE? query reads the contents of the PRE register. The
response is a decimal number which corresponds to the binary
sum of the register bits.

COMMAND SYNTAX PRE <value>
<value> : = 0 to 65 535

QUERY SYNTAX *PRE?

RESPONSE FORMAT *PRE <value>

EXAMPLE The following instruction will cause the ‘ist’ status bit to become
1 as soon as the MAV bit (bit 4 of STB, i.e. decimal 16) is set.
This yields the PRE value 16.

*PRE 16

RELATED COMMANDS *IST

The Commands and Queries

117

WAVEFORM TRANSFER RECALL, RECG
Command

DESCRIPTION The RECALL command recalls a waveform file from the current
directory on mass storage into any or all of the internal
memories M1 to M4. Note that only waveforms stored in
BINARY format can be recalled.

COMMAND SYNTAX <memory> : RECall DISK,<device>,FILE,‘<filename>’
<memory> : = {M1, M2, M3, M4, ALL}

<device> : = {CARDG, FLPYG, HDDG}
<filename> : = An alphanumeric string of up to eight characters,

followed by a dot and an extension of up to three
digits.

G AVAILABILITY This command is available only when the FD01, HD01 or MC01
option is fitted.

<device> : CARD only available when MC01 Option is fitted.
<device> : FLPY only available when FD01 Option is fitted.
<device> : HDD only available when HD01 Option is fitted.

EXAMPLE The following recalls a waveform file called “SC1.001” from the
memory card into Memory M1:

M1:REC DISK,CARD,FILE,‘SC1.001’

RELATED COMMANDS FUNCTION_STATE, STORE, INR?

 The Commands and Queries

118

ACQUISITION REFERENCE_CLOCK, RCLK
Command/Query

DESCRIPTION The REFERENCE_CLOCK selects the system clock source,
allowing the LSA1000 to be phase-synchronized to an external
reference clock input.

COMMAND SYNTAX Reference_CLocK <state>
<state>: = {INT, EXT}

QUERY SYNTAX Reference_CLocK?

RESPONSE FORMAT Reference_CLocK <state>

EXAMPLE The following command sets the LSA1000 to use the external
reference clock.

RCLK EXT

RELATED COMMANDS *CAL, *RCL

The Commands and Queries

119

SAVE/RECALL SETUP *RST
Command

DESCRIPTION The *RST command initiates a device, recalls the default setup,
and causes a calibration to be performed.

COMMAND SYNTAX *RST

EXAMPLE This example resets the LSA1000:

*RST

RELATED COMMANDS *CAL, *RCL

 The Commands and Queries

120

ACQUISITION SEQUENCE, SEQ
Command/Query

DESCRIPTION The SEQUENCE command sets the conditions for the sequence
mode acquisition. The response to the SEQUENCE? query
gives the conditions for the sequence mode acquisition. The
argument <max_size> can be expressed either as numeric fixed
point, exponential or using standard suffixes. When the optional
suffix NUM is used with the query, the response will be returned
in standard numeric format.

COMMAND SYNTAX SEQuence <mode>[,<segments>[,<max_size>]]

<mode> : = {OFF, ON, WRAP}
<segments> : = the right-hand column in the table below:

Max. memory length per
channel Max. number of segments

10 k 50
25 k 50
50 k 200
100 k 500
200 k 500
250 k 500
500 k 2000
1 M 2000
2 M 2000
4 M 2000

<max_size> : = {50, 100, 250, 500, 1000, 2500,
5K, 10K, 25K, 50K, 100K, 250K, 500K,
1M}

Or, alternatively, in standard numeric format:

= {… 10e+3, 10.0e+3,… 11e+3,… }, for example.

Note: The instrument will adapt the requested <max_size> to the
closest valid value.

QUERY SYNTAX SEQuence? [NUM]

RESPONSE FORMAT SEQuence <mode>,<segments>,<max_size>

The Commands and Queries

121

<mode> : = {ON, OFF}

EXAMPLE (GPIB) The following sets the segment count to 43, the maximum
segment size to 250 samples, and turns the sequence mode
ON:

SEQ ON,43,250

RELATED COMMANDS TRIG_MODE

 The Commands and Queries

122

STATUS *SRE
Command/Query

DESCRIPTION The *SRE command sets the Service Request Enable register
(SRE). This command allows the user to specify which summary
message bit(s) in the STB register will generate a service
request. Refer to the table on page 124 for an overview of the
available summary messages.

A summary message bit is enabled by writing a ‘1’ into the
corresponding bit location. Conversely, writing a ‘0’ into a given
bit location prevents the associated event from generating a
service request (SRQ). Clearing the SRE register disables SRQ
interrupts.

The *SRE? query returns a value that, when converted to a
binary number, represents the bit settings of the SRE register.
Note that bit 6 (MSS) cannot be set and its returned value is
always zero.

COMMAND SYNTAX *SRE <value>
 <value> : = 0 to 255

QUERY SYNTAX *SRE?

RESPONSE FORMAT *SRE <value>

EXAMPLE The following instruction allows an SRQ to be generated as soon
as the MAV summary bit (bit 4, i.e. decimal 16) or the INB
summary bit (bit 0, i.e. decimal 1) in the STB register, or both,
are set. Summing these two values yields the SRE mask 16+1 =
17.

*SRE 17

The Commands and Queries

123

STATUS *STB?
Query

DESCRIPTION The *STB? query reads the contents of the 488.1 defined status
register (STB), and the Master Summary Status (MSS). The
response represents the values of bits 0 to 5 and 7 of the Status
Byte register and the MSS summary message.

The response to a *STB? query is identical to the response of a
serial poll except that the MSS summary message appears in bit
6 in place of the RQS message. Refer to the table on page 124
for further details of the status register structure.

QUERY SYNTAX *STB?

RESPONSE FORMAT *STB <value>
<value> : = 0 to 255

EXAMPLE The following reads the status byte register:

*STB?

Response message:

*STB 0

RELATED COMMANDS ALL_STATUS, *CLS, *PRE, *SRE

 The Commands and Queries

124

ADDITIONAL INFORMATION

Status Byte Register (STB)
Bit Bit Value Bit Name Description Note

7 128 DIO7 0 reserved for future use

6 64 MSS/RQS
MSS=1
RQS=1

at least 1 bit in STB masked by SRE is 1
service is requested

(1)
(2)

5 32 ESB 1 an ESR enabled event has occurred (3)

4 16 MAV 1 output queue is not empty (4)

3 8 DIO3 0 reserved

2 4 VAB 1 a command data value has been adapted (5)

1 2 DIO1 0 reserved

0 1 INB 1 an enabled INternal state change has occurred (6)

Notes
(1) The Master Summary Status (MSS) indicates that the instrument requests service, whilst the

Service Request status — when set — specifies that the LSA1000 issued a service request.
Bit position 6 depends on the polling method:
Bit 6 = MSS if an *STB? query is received

= RQS if serial polling is conducted

(2) Example: If SRE=10 and STB=10 then MSS=1. If SRE=010 and STB=100 then MSS=0.

(3) The Event Status Bit (ESB) indicates whether or not one or more of the enabled IEEE 488.2
events have occurred since the last reading or clearing of the Standard Event Status
Register (ESR). ESB is set if an enabled event becomes true (1).

(4) The Message AVailable bit (MAV) indicates whether or not the Output queue is empty. The
MAV summary bit is set true (1) whenever a data byte resides in the Output queue.

(5) The Value Adapted Bit (VAB) is set true (1) whenever a data value in a command has been
adapted to the nearest legal value. For instance, the VAB bit would be set if the timebase is
redefined as 2.5 µs/div since the adapted value is 2 µs/div.

(6) The INternal state Bit (INB) is set true (1) whenever certain enabled internal states are
entered. For further information, refer to the INR query.

The Commands and Queries

125

ACQUISITION STOP
Command

DESCRIPTION The STOP command immediately stops the acquisition of a
signal. If the trigger mode is AUTO or NORM, it will change to
trigger mode STOPPED to prevent further acquisition.

COMMAND SYNTAX STOP

EXAMPLE The following stops the acquisition process:

STOP

RELATED COMMANDS ARM_ACQUISITION, TRIG_MODE, WAIT

 The Commands and Queries

126

WAVEFORM TRANSFER STORE, STO
Command

DESCRIPTION The STORE command stores the contents of the specified trace
into one of the internal memories M1 to M4.

COMMAND SYNTAX STOre [<trace>,<dest>]
<trace> : = {TA, TB, TC, TD, C1, C2, ALL_DISPLAYED}
<dest> : = {M1, M2, M3, M4}

Note: If the STORE command is sent without any argument, all
traces currently enabled in the Store Setup will be stored. This
setup can be modified using the STORE_SETUP command.

EXAMPLE The following command stores the contents of Trace A (TA) into
Memory 1 (M1):
STO TA,M1

The following command executes the storage operation
currently defined in the Storage Setup (see command
STORE_SETUP, page 127):
STO

RELATED COMMANDS STORE_SETUP, RECALL

The Commands and Queries

127

WAVEFORM TRANSFER STORE_SETUP, STST
Command/Query

DESCRIPTION The STORE_SETUP command controls the way in which traces will
be stored. A single trace or all displayed traces may be enabled for
storage. This applies to auto-storing or to the STORE, STO
command.

The STORE_SETUP? query returns the current mode of operation
of Autostore, the current trace selection, and the current destination.

Note that only waveforms stored in BINARY format can be
recalled.

COMMAND SYNTAX STore_SeTup [<trace>, <dest>] [, AUTO, <mode>] [, FORMAT,
<type>]

<trace> : = {TA, TB, TC, TD, C1, C2, ALL_DISPLAYED}
<dest> : = {M1, M2, M3, M4}
<mode> : = {OFF, WRAP, FILL}
<type> : {BINARY, SPREADSHEET, MATHCAD, MATLAB }

QUERY SYNTAX STore_SeTup?

RESPONSE FORMAT STore_SeTup <trace>,<dest>,AUTO,<mode>

EXAMPLE The following selects Channel 1 to be stored and enables an
“autostore” to the M1 memory until no more space is left in the
memory.

STST C1, M1, AUTO,FILL

RELATED COMMANDS STORE, INR

 The Commands and Queries

128

WAVEFORM TRANSFER STORE_TEMPLATE, STTMG
Command

DESCRIPTION The STORE_TEMPLATE command stores the instrument’s
waveform template on a mass-storage device. A filename is
automatically generated in the form of “LECROYvv.TPL” where
“vv” is the two-digit revision number.

Note: For revision 2.1, for example, the file name generated will
be LECROY21.TPL.

Refer to Chapter 4 for more on the waveform template, and
Appendix B for a copy of the template itself.

COMMAND SYNTAX STore_TeMplate DISK,<device>

<device> : = {CARDG, FLPYG, HDDG}

G AVAILABILITY This command is available only when the FD01, HD01 or MC01
option is fitted.

<device> : CARD only available when MC01 option is fitted.
<device> : FLPY only available when FD01 option is fitted
<device> : HDD only available when HD01 option is fitted.

EXAMPLE The following code stores the current waveform template on the
memory card for future reference:

STTM DISK, CARD

RELATED COMMANDS TEMPLATE

The Commands and Queries

129

WAVEFORM TRANSFER TEMPLATE?, TMPL?
Query

DESCRIPTION The TEMPLATE? query produces a copy of the template which
formally describes the various logical entities making up a
complete waveform. In particular, the template describes in full
detail the variables contained in the descriptor part of a
waveform. Refer to Chapter 4 for more on the waveform
template, and Appendix A for a copy of the template itself.

QUERY SYNTAX TeMPLate?

RESPONSE FORMAT TeMPLate “<template>”
<template> : = A variable length string detailing the structure of

a waveform.

RELATED COMMANDS INSPECT

 The Commands and Queries

130

ACQUISITION TIME_DIV, TDIV
Command/Query

DESCRIPTION The TIME_DIV command modifies the timebase setting. The
new timebase setting may be specified with suffixes: NS for
nanoseconds, US for microseconds, MS for milliseconds, S for
seconds, or KS for kiloseconds. An out-of-range value causes
the VAB bit (bit 2) in the STB register (see table on page 124) to
be set.

The TIME_DIV? query returns the current timebase setting.

COMMAND SYNTAX Time_DIV <value>
<value> : = Refer to model’s specifications.

Note: The suffix S (seconds) is optional.

QUERY SYNTAX Time_DIV?

RESPONSE FORMAT Time_DIV <value>

EXAMPLE The following sets the time base to 500 µsec/div:

TDIV 500US

The following sets the time base to 2 msec/div:

TDIV 0.002

RELATED COMMANDS TRIG_DELAY, TRIG_MODE

The Commands and Queries

131

DISPLAY TRACE, TRA
Command/Query

DESCRIPTION The TRACE command enables or disables the display of a trace.
An environment error (see table on page 60) is set if an attempt is
made to display more than four waveforms.

The TRACE? query indicates whether the specified trace is
displayed or not.

COMMAND SYNTAX <trace> : TRAce <mode>

<trace> : = {C1, C2, TA, TB, TC, TD}

<mode> : = {ON, OFF}

QUERY SYNTAX <trace> : TRAce?

RESPONSE FORMAT <trace> : TRAce <mode>

EXAMPLE The following command displays Trace A (TA):

TA:TRA ON

RELATED COMMANDS DEFINE

 The Commands and Queries

132

ACQUISITION *TRG
Command

DESCRIPTION The *TRG command executes an ARM command.

Note: The *TRG command is the equivalent of the 488.1 GET
(Group Execute Trigger) message.

COMMAND SYNTAX *TRG

EXAMPLE The following command enables signal acquisition:

TRG

RELATED COMMANDS ARM_ACQUISITION, STOP, WAIT

The Commands and Queries

133

ACQUISITION TRIG_DELAY, TRDL
Command/Query

DESCRIPTION The TRIG_DELAY command sets the time at which the trigger is
to occur with respect to the first acquired data point (displayed at
the left-hand edge of the screen).

The command expects positive trigger delays to be expressed
as a percentage of the full horizontal screen. This mode is called
pre-trigger acquisition, as data are acquired before the trigger
occurs. Negative trigger delays must be given in seconds. This
mode is called post-trigger acquisition, as the data are acquired
after the trigger has occurred.

If a value outside the range − 10 000 div X time/div and 100% is
specified, the trigger time will be set to the nearest limit and the
VAB bit (bit 2) will be set in the STB register.

The response to the TRIG_DELAY? query indicates the trigger
time with respect to the first acquired data point. Positive times
are expressed as a percentage of the full horizontal screen and
negative times in seconds.

COMMAND SYNTAX TRig_DeLay <value>
<value> : = 0.00 PCT to 100.00 PCT (pretrigger)

− 20 PS to − 10 MAS (post-trigger)

Note: The suffix is optional. For positive numbers the suffix PCT
is assumed. For negative numbers the suffix S is assumed. MAS
is the suffix for Ms (megaseconds), useful only for extremely
large delays at very slow timebases.

QUERY SYNTAX TRig_DeLay?

RESPONSE FORMAT TRig_DeLay <value>

EXAMPLE The following command sets the trigger delay to − 20 s (post-
trigger):

TRDL − 20S

RELATED COMMANDS TIME_DIV, TRIG_COUPLING, TRIG_LEVEL, TRIG_LEVEL_2,
TRIG_MODE, TRIG_SELECT, TRIG_SLOPE, TRIG_WINDOW

 The Commands and Queries

134

ACQUISITION TRIG_LEVEL, TRLV
Command/Query

DESCRIPTION The TRIG_LEVEL command adjusts the trigger level of the
specified trigger source. An out-of-range value will be adjusted
to the closest legal value and will cause the VAB bit (bit 2) in the
STB register to be set.

The TRIG_LEVEL? query returns the current trigger level.

COMMAND SYNTAX <trig_source> : TRig_LeVel <trig_level>
<trig_source> : = {C1, C2}
<trig_level> : = Refer to model’s specifications.

Note: The suffix V is optional.

QUERY SYNTAX <trig_source> : TRig_LeVel?

RESPONSE FORMAT <trig_source> : TRig_LeVel <trig_level>

EXAMPLE The following code adjusts the trigger level of Channel 2 to -3.4 V:

C2:TRLV -3.4V

RELATED COMMANDS TRIG_COUPLING, TRIG_DELAY, TRIG_LEVEL_2,
TRIG_MODE, TRIG_SELECT, TRIG_SLOPE, TRIG_WINDOW

The Commands and Queries

135

ACQUISITION TRIG_MODE, TRMD
Command/Query

DESCRIPTION The TRIG_MODE command specifies the trigger mode.

The TRIG_MODE? query returns the current trigger mode.

COMMAND SYNTAX TRig_MoDe <mode>
<mode> : = {AUTO, NORM, SINGLE, STOP}

QUERY SYNTAX TRig_MoDe?

RESPONSE FORMAT TRig_MoDe <mode>

EXAMPLE The following selects the normal mode:

TRMD NORM

RELATED COMMANDS ARM_ACQUISITION, STOP, TRIG_SELECT,
TRIG_COUPLING, TRIG_LEVEL, TRIG_SLOPE,
TRIG_WINDOW

 The Commands and Queries

136

ACQUISITION TRIG_SELECT, TRSE
Command/Query

DESCRIPTION The TRIG_SELECT command selects the condition that will
trigger the acquisition of waveforms. Depending on the trigger
type, additional parameters must be specified. These additional
parameters are grouped in pairs. The first in the pair names the
variable to be modified, while the second gives the new value to
be assigned. Pairs may be given in any order and restricted to
those variables to be changed.

The TRIG_SELECT? query returns the current trigger condition.

Trigger Notation
EDGE Edge WIND Window

COMMAND SYNTAX TRig_SElect <trig_type>,SR,<source>,HT,<hold_type>

<trig_type> : = {EDGE, WINDG}
<source> : = {C1, C2, EX}
<hold_value> : = {OFF} — OFF is the only hold type available

Note: The suffix S (seconds) is optional.

QUERY SYNTAX TRig_SElect?

RESPONSE FORMAT TRig_SElect <trig_type>,SR,<source>,HT,OFF

G AVAILABILITY <trig_type> : WIND not available with EX as source.

EXAMPLE The following sets up the trigger system to trigger on Channel 1:

TRSE EDGE,SR,C1

RELATED COMMANDS TRIG_COUPLING, TRIG_DELAY, TRIG_LEVEL, TRIG_MODE,
TRIG_SLOPE, TRIG_SLOPE, TRIG_WINDOW

The Commands and Queries

137

ACQUISITION TRIG_SLOPE, TRSL
Command/Query

DESCRIPTION The TRIG_SLOPE command sets the trigger slope of the
specified trigger source. An environment error (see table on
page 60) will be generated when an incompatible TRSL order is
received — for example, if the current trigger type is EDGE, a
slope of WIN or WOUT may not be specified.

The TRIG_SLOPE? query returns the trigger slope of the selected
source.

COMMAND SYNTAX <trig_source> : TRig_SLope <trig_slope>
<trig_source> : = {C1, C2, EX}

<trig_slope> : = {NEG, POS, WOUTG, WING}

QUERY SYNTAX <trig_source> : TRig_SLope?

RESPONSE FORMAT <trig_source> : TRig_SLope <trig_slope>

G AVAILABILITY <trig_source> : = WOUT and WIN not available with EX as
source.

EXAMPLE The following sets the trigger slope of Channel 2 to negative:

C2:TRSL NEG

RELATED COMMANDS TRIG_COUPLING, TRIG_DELAY, TRIG_LEVEL, TRIG_MODE,
TRIG_SELECT, TRIG_SLOPE, TRIG_WINDOW

 The Commands and Queries

138

ACQUISITION TRIG_WINDOW, TRWI
Command/Query

DESCRIPTION The TRIG_WINDOW command sets the window amplitude in
volts on the specified trigger source. The window is centered
around the Edge trigger level.

The TRIG_WINDOW? query returns the current window
amplitude.

COMMAND SYNTAX <trig_source>:TRig_WIndow <value>
<source>: = {C1, C2}
<value> : = 0 to 1 V (maximum range)

Note: The suffix V is optional.

QUERY SYNTAX <trig_source> : TRig_WIndow?

RESPONSE FORMAT <trig_source> : TRig_WIndow <trig_level>

EXAMPLE The following command adjusts the window size to +0.5 V on
Channel 1:

C1:TRWI 0.5V

RELATED COMMANDS TRIG_COUPLING, TRIG_DELAY, TRIG_LEVEL, TRIG_MODE,
TRIG_SELECT, TRIG_SLOPE

The Commands and Queries

139

MISCELLANEOUS *TST?
Query

DESCRIPTION The *TST? query performs an internal self-test, the response
indicating whether the self-test has detected any errors. The
self-test includes testing the hardware of all channels, the
timebase and the trigger circuits.

Hardware failures are identified by a unique binary code in the
returned <status> number. A “0” response indicates that no
failures occurred.

QUERY SYNTAX *TST?

RESPONSE FORMAT *TST <status>
<status> : = 0 self-test successful

EXAMPLE The following causes a self-test to be performed:

*TST?

Response message (if no failure):

*TST 0

RELATED COMMANDS *CAL

 The Commands and Queries

140

DISPLAY VERT_MAGNIFY, VMAG
Command/Query

DESCRIPTION The VERT_MAGNIFY command vertically expands the specified
trace. The command is executed even if the trace is not displayed.

The maximum magnification allowed depends on the number of
significant bits associated with the data of the trace.

The VERT_MAGNIFY? query returns the magnification factor of
the specified trace.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX <trace> : Vert_MAGnify <factor>

<trace> : = {TA, TB, TC, TD}

<factor> : = 4.0E-3 to 50 (maximum)

QUERY SYNTAX <trace> : Vert_MAGnify?

RESPONSE FORMAT <trace> : Vert_MAGnify <factor>

EXAMPLE The following command enlarges the vertical amplitude of Trace A
by a factor of 3.45 with respect to its original amplitude:

TA:VMAG 3.45

RELATED COMMANDS VERT_POSITION

The Commands and Queries

141

DISPLAY VERT_POSITION, VPOS
Command/Query

DESCRIPTION The VERT_POSITION command adjusts the vertical position of the
specified trace on the screen. It does not affect the original offset
value obtained at acquisition time.

The VERT_POSITION? query returns the current vertical position of
the specified trace.

This command is included for used with programs such as
ScopeExplorer.

COMMAND SYNTAX <trace> : Vert_POSITION <display_offset>

<trace> : = {TA, TB, TC, TD}

<display_offset> : = -5900 to +5900 DIV

Note: The suffix DIV is optional. The limits depend on the current
magnification factor, the number of grids on the display, and the
initial position of the trace.

QUERY SYNTAX <trace> : Vert_POSition?

RESPONSE FORMAT <trace> : Vert_POSITION <display_offset>

EXAMPLE The following shifts Trace A (TA) upwards by +3 divisions relative to
the position at the time of acquisition:

TA:VPOS 3DIV

RELATED COMMANDS VERT_MAGNIFY

 The Commands and Queries

142

ACQUISITION VOLT_DIV, VDIV
Command/Query

DESCRIPTION The VOLT_DIV command sets the vertical sensitivity in
Volts/div. The VAB bit (bit 2) in the STB register (see table on
page 124) is set if an out-of-range value is entered.

The VOLT_DIV query returns the vertical sensitivity of the
specified channel.

COMMAND SYNTAX <channel> : Volt_DIV <v_gain>
<channel> : = {C1, C2}
<v_gain> : = Refer to model’s specifications.

Note: The suffix V is optional.

QUERY SYNTAX <channel> : Volt_DIV?

RESPONSE FORMAT <channel> : Volt_DIV <v_gain>

EXAMPLE The following command sets the vertical sensitivity of channel 1
to 50 mV/div:

C1:VDIV 50MV

RELATED COMMANDS GAIN_MODE, VOLT_RANGE

The Commands and Queries

143

ACQUISITION VOLT_RANGE, VRNGG
Command/Query

DESCRIPTION The VOLT_RANGE command sets the full-scale range in volts.
The VAB bit (bit 2) in the STB register (see table on page 124) is
set if an out-of-range value is entered.

The VOLT_RANGE query returns the full-scale range of the
specified channel.

COMMAND SYNTAX <channel> : Volt_RaNGe <v_range>
<channel> : = {C1, C2}
<v_range> : = Refer to model specifications.

Note: The suffix V is optional.

QUERY SYNTAX <channel> : Volt_RaNGe?

RESPONSE FORMAT <channel> : Volt_RaNGe <v_range>

G AVAILABILITY Command is only available if model supports adjustable range.

EXAMPLE The following sets the full-scale range of Channel 1 to 50 mV:

C1:VRNG 50MV

RELATED COMMANDS GAIN_MODE, VOLT_DIV

 The Commands and Queries

144

STATUS *WAI
Command

DESCRIPTION The *WAI (WAIt to continue) command, required by the IEEE
488.2 standard, has no effect on the instrument, as the LSA1000
only starts processing a command when the previous command
has been entirely executed.

COMMAND SYNTAX *WAI

RELATED COMMANDS *OPC

The Commands and Queries

145

ACQUISITION WAIT
Command

DESCRIPTION The WAIT command prevents the instrument from analyzing
new commands until the LSA1000 has completed the current
acquisition.

COMMAND SYNTAX WAIT

EXAMPLE send: “TRMD SINGLE”
loop {send:“ARM;WAIT;C1:PAVA?MAX”

read response
process response
}

This example finds the maximum amplitudes of several signals
acquired one after another. ARM starts a new data acquisition.
The WAIT command ensures that the maximum is evaluated for
the newly acquired waveform.

“C1:PAVA?MAX” instructs the instrument to evaluate the
maximum data value in the Channel 1 waveform.

RELATED COMMANDS *TRG

 The Commands and Queries

146

WAVEFORM TRANSFER WAVEFORM, WF
Command/Query

DESCRIPTION A WAVEFORM command transfers a waveform from the
controller to the LSA1000, whereas a WAVEFORM? query
transfers a waveform from the LSA1000 to the controller.

The WAVEFORM command stores an external waveform back
into the LSA1000’s internal memory. A waveform consists of
several distinct entities:

1. the descriptor (DESC)
2. the user text (TEXT)
3. the time (TIME) descriptor
4. the data (DAT1) block, and, optionally
5. a second block of data (DAT2).

For further information on the structure of the waveform refer to
Chapter 4.

Note 1: Only complete waveforms queried with “WAVEFORM?
ALL” can be restored into the LSA1000.

The WAVEFORM? query instructs the LSA1000 to transmit a
waveform to the controller. The entities may be queried
independently. If the “ALL” parameter is specified, all four or five
entities are transmitted in one block in the order enumerated
above.

Note 2: The format of the waveform data depends on the current
settings specified by the last WAVEFORM_SETUP command,
the last COMM_ORDER command, and the last
COMM_FORMAT command.

COMMAND SYNTAX <memory> : WaveForm ALL <waveform_data_block>
<memory> : = {M1, M2, M3, M4}
<waveform_data_block> : = Arbitrary data block (see Chapter
5).

QUERY SYNTAX <trace> : WaveForm? <block>
<trace> : = {TA, TB, TC,TD, M1, M2, M3, M4, C1, C2}
<block> : = {DESC, TEXT, TIME, DAT1, DAT2, ALL}

Note 3: If no parameter is given ALL will be assumed.

The Commands and Queries

147

RESPONSE FORMAT <trace> : WaveForm <block>,<waveform_data_block>

Note 4: It may be convenient to disable the response header if
the waveform is to be restored. Refer to command
COMM_HEADER for further details.

EXAMPLE The following reads the block DAT1 from Memory 1:

M1:WF? DAT1

RELATED COMMANDS INSPECT, COMM_FORMAT, COMM_ORDER,
FUNCTION_STATE, TEMPLATE, WAVEFORM_SETUP,
WAVEFORM_TEXT

 The Commands and Queries

148

WAVEFORM TRANSFER WAVEFORM_SETUP, WFSU
Command/Query

DESCRIPTION The WAVEFORM_SETUP command specifies the amount of
data in a waveform to be transmitted to the controller. The
command controls the settings of the parameters listed below.

Notation
FP first point NP number of points

SP sparsing

Sparsing (SP): The sparsing parameter defines the interval
between data points. For example:

SP = 0 sends all data points
SP = 1 sends all data points
SP = 4 sends every 4th data point

Number of points (NP): The number of points parameter
indicates how many points should be transmitted. For example:

NP = 0 sends all data points
NP = 1 sends 1 data point
NP = 50 sends a maximum of 50 data points
NP = 1001 sends a maximum of 1001 data points

First point (FP): The first point parameter specifies the address
of the first data point to be sent. For example:

FP = 0 corresponds to the first data point
FP = 1 corresponds to the second data point
FP = 5000 corresponds to data point 5001

The WAVEFORM_SETUP? query returns the transfer
parameters currently in use.

COMMAND SYNTAX WaveForm_SetUp SP,<sparsing>,NP,<number>,FP,<point>

Note 1: After power-on, all values are set to 0 (i.e. entire
waveforms will be transmitted without sparsing).

Note 2: Parameters are grouped in pairs. The first of the pair
names the variable to be modified, whilst the second gives the
new value to be assigned. Pairs may be given in any order and
may be restricted to those variables to be changed.

The Commands and Queries

149

QUERY SYNTAX WaveForm_SetUp?

RESPONSE FORMAT WaveForm_SetUp SP,<sparsing>,NP,<number>,FP,<point>

EXAMPLE The following command specifies that every 3rd data point
(SP=3) starting at address 200 should be transferred:
WFSU SP,3,FP,200

RELATED COMMANDS INSPECT, WAVEFORM, TEMPLATE

 The Commands and Queries

150

WAVEFORM TRANSFER WAVEFORM_TEXT, WFTX
Command/Query

DESCRIPTION The WAVEFORM_TEXT command is used to document the
conditions under which a waveform has been acquired. The text
buffer is limited to 160 characters.

The WAVEFORM_TEXT? query returns the text section of the
specified trace.

COMMAND SYNTAX <trace> : WaveForm_TeXt ‘<text>’

<trace> : = {TA, TB, TC, TD, M1, M2, M3, M4, C1, C2}
<text> : = An ASCII message (max. 160 characters long)

QUERY SYNTAX <trace> : WaveForm_TeXt?

RESPONSE FORMAT <trace> : WaveForm_TeXt “<text>”

EXAMPLE The following documents Trace A (TA):

TA:WFTX ‘Averaged pressure signal. Experiment
carried out Jan.15, 98’

RELATED COMMANDS INSPECT, WAVEFORM, TEMPLATE

The Commands and Queries

151

DISPLAY XY_ASSIGN?, XYAS?
Query

DESCRIPTION The XY_ASSIGN? query returns the traces currently assigned to the
XY display. If there is no trace assigned to the X-axis and/or the Y-
axis the value UNDEF will be returned instead of the trace name.

This command is included for use with programs such as
ScopeExplorer.

QUERY SYNTAX XY_ASsign?

RESPONSE FORMAT XY_ASsign <X_source>,<Y_source>

<X_source> : = {UNDEF, TA, TB, TC, TD, C1, C2}

<Y_source> : = {UNDEF, TA, TB, TC, TD, C1, C2}

EXAMPLE The following query finds the traces assigned to the X-axis and the
Y-axis respectively:

XYAS?

Example of response message:

XYAS C1,C2

RELATED COMMANDS TRACE

 The Commands and Queries

152

CURSOR XY_CURSOR_ORIGIN, XYCO
Command/Query

DESCRIPTION The XY_CURSOR_ORIGIN command sets the position of the
origin for XY absolute cursor measurements.

Absolute cursor values may be measured either with respect to
the point (0,0) volts (OFF) or with respect to the center of the XY
grid (ON).

The XY_CURSOR_ORIGIN query returns the current
assignment of the origin for absolute cursor measurements.

COMMAND SYNTAX XY_Cursor_Origin <mode>

<mode> : = {ON, OFF}

QUERY SYNTAX XY_Cursor_Origin?

RESPONSE FORMAT XY_Cursor_Origin <mode>

EXAMPLE The following command sets the origin for absolute cursor
measurements to the center of the XY grid.

XYCO ON

RELATED COMMANDS XY_CURSOR_VALUE

The Commands and Queries

153

CURSOR XY_CURSOR_SET, XYCS
Command/Query

DESCRIPTION The XY_CURSOR_SET command allows the user to position
any one of the six independent XY voltage cursors at a given
location. The positions of the cursors can be modified or queried
even if the required cursor is not currently displayed or if the XY
display mode is OFF.

The XY_CURSOR_SET? query indicates the current position of
the cursor(s).

The CURSOR_SET command is used to position the time
cursors.

Notation
XABS vertical absolute on X axis

XREF vertical reference on X axis

XDIF vertical difference on X axis

YABS vertical absolute on Y axis

YREF vertical reference on Y axis

YDIF vertical difference on Y axis

COMMAND SYNTAX XY_Cursor_Set
<cursor>,<position>[,<cursor>,<position>,...
<cursor>,<position>]
<cursor> : = {XABS, XREF, XDIF, YABS, YREF, YDIF}
<position> : = − 4 to 4 DIV

Note 1: The suffix DIV is optional.

Note 2: Parameters are grouped in pairs. The first of the pair
names the cursor to be modified, whilst the second indicates its
new value. Pairs may be given in any order and may be
restricted to those items to be changed.

QUERY SYNTAX XY_Cursor_Set? [<cursor,...<cursor>]

<cursor> : = {XABS, XREF, XDIF, YABS, YREF, YDIF, ALL}

Note: If <cursor> is not specified, ALL will be assumed.

 The Commands and Queries

154

RESPONSE FORMAT XY_Cursor_Set
<cursor>,<position>[,<cursor>,<position>...,
<cursor>,<position>]

EXAMPLE The following command positions the XREF and YDIF at +3 DIV
and − 2 DIV respectively.
XYCS XREF,3DIV,YDIF,− 2DIV

RELATED COMMANDS XY_CURSOR_VALUE, CURSOR_MEASURE, CURSOR_SET

The Commands and Queries

155

CURSOR XY_CURSOR_VALUE?, XYCV?
Query

DESCRIPTION The XY_CURSOR_VALUE? query returns the current values of
the X versus Y cursors. The X versus Y trace does not need to
be displayed to obtain these parameters, but valid sources must
be assigned to the X and Y axes.

Notation
<cursor type> : = [HABS, HREL, VABS, VREL]

<cursor type>_X X

<cursor type>_Y Y

<cursor type>_RATIO +Y/+X

<cursor type>_PROD +Y*+X

<cursor type>_ANGLE arc tan(+Y/+X)

<cursor type>_RADIUS sqrt(+X*+X + +Y*+Y)

QUERY SYNTAX XY_Cursor_Value? [<parameter>,...<parameter>]
<parameter> : = {HABS_X, HABS_Y, HABS_RATIO, HABS_PROD,
HABS_ANGLE, HABS_RADIUS, HREL_X, HREL_Y, HREL_RATIO,
HREL_PROD, HREL_ANGLE, HREL_RADIUS, VABS_X, VABS_Y,
VABS_RATIO, VABS_PROD, VABS_ANGLE, VABS_RADIUS,
VREL_X, VREL_Y, VREL_RATIO, VREL_PROD, VREL_ANGLE,
VREL_RADIUS, ALL}

Note: If <parameter> is not specified or equals ALL, all the
measured cursor values are returned. If the value of a cursor
could not be determined in the current environment, the value
UNDEF will be returned. If no trace has been assigned to either
the X axis or the Y axis, an environment error will be generated.

RESPONSE FORMAT XY_Cursor_Value <parameter>,<value>[,...<parameter>,<value>]

<value> : = A decimal value or UNDEF

 The Commands and Queries

156

EXAMPLE The following query reads the ratio of the absolute horizontal
cursor, the angle of the relative horizontal cursor, and the
product of the absolute vertical cursors:

XYCV? HABS_RATIO,HREL_ANGLE,VABS_PROD

RELATED COMMANDS CURSOR_MEASURE, CURSOR_VALUE,
XY_CURSOR_ORIGIN

The Commands and Queries

157

DISPLAY XY_DISPLAY, XYDS
Command/Query

DESCRIPTION The XY_DISPLAY command enables or disables the XY display
mode. When off, the scope is in standard display mode.

The XY_DISPLAY? query returns the current mode of the XY
display.

COMMAND SYNTAX XY_DiSplay <mode>

QUERY SYNTAX XY_DiSplay?

RESPONSE FORMAT XY_DiSplay <mode>

EXAMPLE The following turns the XY display ON:
XYDS ON

RELATED COMMANDS GRID

 The Commands and Queries

158

DISPLAY XY_SATURATION, XYSA
Command/Query

DESCRIPTION The XY_SATURATION command sets the level at which the color
spectrum of the persistence display is saturated in XY display mode.
The level is specified in terms of percentage (PCT) of the total
persistence data map population. A level of 100 PCT corresponds
to the color spectrum being spread across the entire depth of the
persistence data map. At lower values, the spectrum will saturate
(brightest value) at the specified percentage value. The PCT is
optional.

The response to the XY_SAT? query indicates the saturation
level of the persistence data maps.

COMMAND SYNTAX XY_SAturation <trace>,<value> [<trace>,<value>]

<trace> : = { C1, C2, TA, TB, TC, TD, ALL}

<value> : = 0 to 100 PCT

Note: The suffix PCT is optional.

QUERY SYNTAX XY_SAturation?

RESPONSE FORMAT XY_SAturation <trace>,<value>

EXAMPLE The following sets the saturation level of the XY persistence data
map for channel 3 to be 60%, i.e. 60% of the data points will be
displayed with the color spectrum, with the remaining 40% saturated
in the brightest color:
XYSA C3,60

RELATED COMMANDS PERSIST_SAT

A–1

TemplateA
Waveform Template

This template is the instrument’s response to a command of
the form “TMPL?”:

/00
000000 LECROY_2_2: TEMPLATE
 8 66 111
;
; Explanation of the formats of waveforms and their descriptors on the
; LeCroy Digital Oscilloscopes,
; Software Release 44.1.1.1, 94/04/18.
;
; A descriptor and/or a waveform consists of one or several logical data blocks
; whose formats are explained below.
; Usually, complete waveforms are read: at the minimum they consist of
; the basic descriptor block WAVEDESC
; a data array block.
; Some more complex waveforms, e.g. Extrema data or the results of a Fourier
; transform, may contain several data array blocks.
; When there are more blocks, they are in the following sequence:
; the basic descriptor block WAVEDESC
; the history text descriptor block USERTEXT (may or may not be present)
; the time array block (for RIS and sequence acquisitions only)
; data array block
; auxiliary or second data array block
;
; In the following explanation, every element of a block is described by a
; single line in the form
;
; <byte position> <variable name>: <variable type> ; <comment>
;
; where
;
; <byte position> = position in bytes (decimal offset) of the variable,
; relative to the beginning of the block.
;
; <variable name> = name of the variable.
;
; <variable type> = string up to 16-character name
; terminated with a null byte
; byte 8-bit signed data value
; word 16-bit signed data value
; long 32-bit signed data value

A–2

Template

; float 32-bit IEEE floating point value
; with the format shown below
; 31 30 .. 23 22 ... 0 bit position
; s exponent fraction
; where
; s = sign of the fraction
; exponent = 8 bit exponent e
; fraction = 23 bit fraction f
; and the final value is
; (-1)**s * 2**(e-127) * 1.f
; double 64-bit IEEE floating point value
; with the format shown below
; 63 62 .. 52 51 ... 0 bit position
; s exponent fraction
; where
; s = sign of the fraction
; exponent = 11 bit exponent e
; fraction = 52 bit fraction f
; and the final value is
; (-1)**s * 2**(e-1023) * 1.f
; enum enumerated value in the range 0 to N
; represented as a 16-bit data value.
; The list of values follows immediately.
; The integer is preceded by an _.
; time_stamp double precision floating point number,
; for the number of seconds and some bytes
; for minutes, hours, days, months and year.
;
; double seconds (0 to 59)
; byte minutes (0 to 59)
; byte hours (0 to 23)
; byte days (1 to 31)
; byte months (1 to 12)
; word year (0 to 16000)
; word unused
; There are 16 bytes in a time field.
; data byte, word or float, depending on the
; read-out mode reflected by the WAVEDESC
; variable COMM_TYPE, modifiable via the
; remote command COMM_FORMAT.
; text arbitrary length text string
; (maximum 160)
; unit_definition a unit definition consists of a 48 character
; ASCII string terminated with a null byte
; for the unit name.
;
;==
;

A–3

WAVEDESC: BLOCK
;
; Explanation of the wave descriptor block WAVEDESC;
;
;
< 0> DESCRIPTOR_NAME: string ; the first 8 chars are always WAVEDESC
;
< 16> TEMPLATE_NAME: string
;
< 32> COMM_TYPE: enum ; chosen by remote command COMM_FORMAT
 _0 byte
 _1 word
 endenum
;
< 34> COMM_ORDER: enum
 _0 HIFIRST
 _1 LOFIRST
 endenum
;
;
; The following variables of this basic wave descriptor block specify
; the block lengths of all blocks of which the entire waveform (as it is
; currently being read) is composed. If a block length is zero, this
; block is (currently) not present.
;
;
;BLOCKS :
;
< 36> WAVE_DESCRIPTOR: long ; length in bytes of block WAVEDESC
< 40> USER_TEXT: long ; length in bytes of block USERTEXT
< 44> RES_DESC1: long ;
;
;ARRAYS :
;
< 48> TRIGTIME_ARRAY: long ; length in bytes of TRIGTIME array
;
< 52> RIS_TIME_ARRAY: long ; length in bytes of RIS_TIME array
;
< 56> RES_ARRAY1: long ; an expansion entry is reserved
;
< 60> WAVE_ARRAY_1: long ; length in bytes of 1st simple
 ; data array. In transmitted waveform,
 ; represent the number of transmitted
 ; bytes in accordance with the NP
 ; parameter of the WFSU remote command
 ; and the used format (see COMM_TYPE).
;
< 64> WAVE_ARRAY_2: long ; length in bytes of 2nd simple
 ; data array

A–4

Template

;
< 68> RES_ARRAY2: long
< 72> RES_ARRAY3: long ; 2 expansion entries are reserved
;
; The following variables identify the instrument
;
< 76> INSTRUMENT_NAME: string
;
< 92> INSTRUMENT_NUMBER: long
;
< 96> TRACE_LABEL: string ; identifies the waveform.
;
<112> RESERVED1: word
<114> RESERVED2: word ; 2 expansion entries
;
; The following variables describe the waveform and the time at
; which the waveform was generated.
;
<116> WAVE_ARRAY_COUNT: long ; number of data points in the data
 ; array. If there are two data
 ; arrays (FFT or Extrema), this number
 ; applies to each array separately.
;
<120> PNTS_PER_SCREEN: long ; nominal number of data points
 ; on the screen
;
<124> FIRST_VALID_PNT: long ; count of number of points to skip
 ; before first good point
 ; FIRST_VALID_POINT = 0
 ; for normal waveforms.
;
<128> LAST_VALID_PNT: long ; index of last good data point
 ; in record before padding (blanking)
 ; was started.
 ; LAST_VALID_POINT = WAVE_ARRAY_COUNT-1
 ; except for aborted sequence
 ; and rollmode acquisitions
;
<132> FIRST_POINT: long ; for input and output, indicates
 ; the offset relative to the
 ; beginning of the trace buffer.
 ; Value is the same as the FP parameter
 ; of the WFSU remote command.
;
<136> SPARSING_FACTOR: long ; for input and output, indicates
 ; the sparsing into the transmitted
 ; data block.
 ; Value is the same as the SP parameter

A–5

 ; of the WFSU remote command.
;
<140> SEGMENT_INDEX: long ; for input and output, indicates the
 ; index of the transmitted segment.
 ; Value is the same as the SN parameter
 ; of the WFSU remote command.
;
<144> SUBARRAY_COUNT: long ; for Sequence, acquired segment count,
 ; between 0 and NOM_SUBARRAY_COUNT
;
<148> SWEEPS_PER_ACQ: long ; for Average or Extrema,
 ; number of sweeps accumulated
 ; else 1
;
<152> POINTS_PER_PAIR: word ; for Peak Dectect waveforms (which always
 ; include data points in DATA_ARRAY_1 and
 ; min/max pairs in DATA_ARRAY_2).
 ; Value is the number of data points for
 ; each min/max pair.
;
<154> PAIR_OFFSET: word ; for Peak Dectect waveforms only
 ; Value is the number of data points by
 ; which the first min/max pair in
 ; DATA_ARRAY_2 is offset relative to the
 ; first data value in DATA_ARRAY_1.
;
<156> VERTICAL_GAIN: float
;
<160> VERTICAL_OFFSET: float ; to get floating values from raw data :
 ; VERTICAL_GAIN * data - VERTICAL_OFFSET
;
<164> MAX_VALUE: float ; maximum allowed value. It corresponds
 ; to the upper edge of the grid.
;
<168> MIN_VALUE: float ; minimum allowed value. It corresponds
 ; to the lower edge of the grid.
;
<172> NOMINAL_BITS: word ; a measure of the intrinsic precision
 ; of the observation: ADC data is 8 bit
 ; averaged data is 10-12 bit, etc.
;
<174> NOM_SUBARRAY_COUNT: word ; for Sequence, nominal segment count
 ; else 1
;
<176> HORIZ_INTERVAL: float ; sampling interval for time domain
 ; waveforms
;
<180> HORIZ_OFFSET: double ; trigger offset for the first sweep of
 ; the trigger, seconds between the

A–6

Template

 ; trigger and the first data point
;
<188> PIXEL_OFFSET: double ; needed to know how to display the
 ; waveform
;
<196> VERTUNIT: unit_definition ; units of the vertical axis
;
<244> HORUNIT: unit_definition ; units of the horizontal axis
;
<292> RESERVED3: word
<294> RESERVED4: word ; 2 expansion entries
;
<296> TRIGGER_TIME: time_stamp ; time of the trigger
;
<312> ACQ_DURATION: float ; duration of the acquisition (in sec)
 ; in multi-trigger waveforms.
 ; (e.g. sequence, RIS, or averaging)
;
<316> RECORD_TYPE: enum
 _0 single_sweep
 _1 interleaved
 _2 histogram
 _3 graph
 _4 filter_coefficient
 _5 complex
 _6 extrema
 _7 sequence_obsolete
 _8 centered_RIS
 _9 peak_detect
 endenum
;
<318> PROCESSING_DONE: enum
 _0 no_processing
 _1 fir_filter
 _2 interpolated
 _3 sparsed
 _4 autoscaled
 _5 no_result
 _6 rolling
 _7 cumulative
 endenum
;
<320> RESERVED5: word ; expansion entry
;
<322> RIS_SWEEPS: word ; for RIS, the number of sweeps
 ; else 1
;
; The following variables describe the basic acquisition

A–7

; conditions used when the waveform was acquired
;
<324> TIMEBASE: enum
 _0 1_ps/div
 _1 2_ps/div
 _2 5_ps/div
 _3 10_ps/div
 _4 20_ps/div
 _5 50_ps/div
 _6 100_ps/div
 _7 200_ps/div
 _8 500_ps/div
 _9 1_ns/div
 _10 2_ns/div
 _11 5_ns/div
 _12 10_ns/div
 _13 20_ns/div
 _14 50_ns/div
 _15 100_ns/div
 _16 200_ns/div
 _17 500_ns/div
 _18 1_us/div
 _19 2_us/div
 _20 5_us/div
 _21 10_us/div
 _22 20_us/div
 _23 50_us/div
 _24 100_us/div
 _25 200_us/div
 _26 500_us/div
 _27 1_ms/div
 _28 2_ms/div
 _29 5_ms/div
 _30 10_ms/div
 _31 20_ms/div
 _32 50_ms/div
 _33 100_ms/div
 _34 200_ms/div
 _35 500_ms/div
 _36 1_s/div
 _37 2_s/div
 _38 5_s/div
 _39 10_s/div
 _40 20_s/div
 _41 50_s/div
 _42 100_s/div
 _43 200_s/div
 _44 500_s/div
 _45 1_ks/div

A–8

Template

 _46 2_ks/div
 _47 5_ks/div
 _100 EXTERNAL
 endenum
;
<326> VERT_COUPLING: enum
 _0 DC_50_Ohms
 _1 ground
 _2 DC_1MOhm
 _3 ground
 _4 AC,_1MOhm
 endenum
;
<328> PROBE_ATT: float
;
<332> FIXED_VERT_GAIN: enum
 _0 1_uV/div
 _1 2_uV/div
 _2 5_uV/div
 _3 10_uV/div
 _4 20_uV/div
 _5 50_uV/div
 _6 100_uV/div
 _7 200_uV/div
 _8 500_uV/div
 _9 1_mV/div
 _10 2_mV/div
 _11 5_mV/div
 _12 10_mV/div
 _13 20_mV/div
 _14 50_mV/div
 _15 100_mV/div
 _16 200_mV/div
 _17 500_mV/div
 _18 1_V/div
 _19 2_V/div
 _20 5_V/div
 _21 10_V/div
 _22 20_V/div
 _23 50_V/div
 _24 100_V/div
 _25 200_V/div
 _26 500_V/div
 _27 1_kV/div
 endenum
;
<334> BANDWIDTH_LIMIT: enum
 _0 off

A–9

 _1 on
 endenum
;
<336> VERTICAL_VERNIER: float
;
<340> ACQ_VERT_OFFSET: float
;
<344> WAVE_SOURCE: enum
 _0 CHANNEL_1
 _1 CHANNEL_2
 _2 CHANNEL_3
 _3 CHANNEL_4
 _9 UNKNOWN
 endenum
;
/00 ENDBLOCK
;
;==
;
USERTEXT: BLOCK
;
; Explanation of the descriptor block USERTEXT at most 160 bytes long.
;
;
< 0> TEXT: text ; a list of ASCII characters
;
/00 ENDBLOCK
;
;==
;
DATA_ARRAY_1: ARRAY
;
; Explanation of the data array DATA_ARRAY_1.
; This main data array is always present. It is the only data array for
; most waveforms.
; The data item is repeated for each acquired or computed data point
; of the first data array of any waveform.
;
< 0> MEASUREMENT: data ; the actual format of a data is
 ; given in the WAVEDESC descriptor
 ; by the COMM_TYPE variable.
;
/00 ENDARRAY
;
;==
;
DATA_ARRAY_2: ARRAY
;
; Explanation of the data array DATA_ARRAY_2.

A–10

Template

; This is an optional secondary data array for special types of waveforms:
; Complex FFT imaginary part (real part in DATA_ARRAY_1)
; Extrema floor trace (roof trace in DATA_ARRAY_1)
; Peak Detect min/max pairs (data values in DATA_ARRAY_1)
; In the first 2 cases, there is exactly one data item in DATA_ARRAY_2 for
; each data item in DATA_ARRAY_1.
; In Peak Detect waveforms, there may be fewer data values in DATA_ARRAY_2,
; as described by the variable POINTS_PER_PAIR.
;
< 0> MEASUREMENT: data ; the actual format of a data is
 ; given in the WAVEDESC descriptor
 ; by the COMM_TYPE variable.
;
/00 ENDARRAY
;
;==
;
TRIGTIME: ARRAY
;
; Explanation of the trigger time array TRIGTIME.
; This optional time array is only present with SEQNCE waveforms.
; The following data block is repeated for each segment which makes up
; the acquired sequence record.
;
< 0> TRIGGER_TIME: double ; for sequence acquisitions,
 ; time in seconds from first
 ; trigger to this one
;
< 8> TRIGGER_OFFSET: double ; the trigger offset is in seconds
 ; from trigger to zeroth data point
;
/00 ENDARRAY
;
;==
;
RISTIME: ARRAY
;
; Explanation of the random-interleaved-sampling (RIS) time array RISTIME.
; This optional time array is only present with RIS waveforms.
; This data block is repeated for each sweep which makes up the RIS record
;
< 0> RIS_OFFSET: double ; seconds from trigger to zeroth
 ; point of segment
;
/00 ENDARRAY
;
;==
;

A–11

SIMPLE: ARRAY
;
; Explanation of the data array SIMPLE.
; This data array is identical to DATA_ARRAY_1. SIMPLE is an accepted
; alias name for DATA_ARRAY_1.
;
< 0> MEASUREMENT: data ; the actual format of a data is
 ; given in the WAVEDESC descriptor
 ; by the COMM_TYPE variable.
;
/00 ENDARRAY
;
;==
;
DUAL: ARRAY
;
; Explanation of the DUAL array.
; This data array is identical to DATA_ARRAY_1, followed by DATA_ARRAY_2.
; DUAL is an accepted alias name for the combined arrays DATA_ARRAY_1 and
; DATA_ARRAY_2 (e.g. real and imaginary parts of an FFT).
;
< 0> MEASUREMENT_1: data ; data in DATA_ARRAY_1.
;
< 0> MEASUREMENT_2: data ; data in DATA_ARRAY_2.
;
/00 ENDARRAY
;
;
000000 ENDTEMPLATE

A–1

TemplateA

Index

A
ACQ_OUT, AOUT,

Command/Query, 9
ALL_STATUS?, ALST?, Query, 10
API, 3-1
ARM_ACQUISITION, ARM,

Command, 11
AUTO_CALIBRATE, ACAL,

Command/Query, 12

B
BANDWIDTH_LIMIT, BWL,

Command/Query, 13
BASICA, 4-4
Binary blocks, 4-7
Bits, 3-3

C
CAL?, Query, 14
CAL_MARGIN?, CMGN? Query,

15
CAL_STATUS?, CSTS?, Query,

16
CLEAR_MEMORY, CLM,

Command, 17
CLEAR_SWEEPS, CLSW,

Command, 18
CLS, Command, 19
CMR (Command Error Status

Register), 5-1, 5-2, 5-4, 5-6
CMR?, Query, 20
COLOR, COLR,

Command/Query, 22
COLOR_SCHEME, CSCH,

Command/Query, 24

COMBINE_CHANNELS, COMB,
Command/Query, 25

COMBINE_SOURCE, COMS,
Command/Query, 26

COMM_FORMAT, CFMT,
Command/Query, 27

COMM_HEADER, CHDR,
Command/Query, 29

COMM_HELP, CHLP,
Command/Query, 30

COMM_HELP_LOG?, CHL?,
Query, 31

COMM_NET, CONET,
Command/Query, 32

COMM_ORDER, CORD,
Command/Query, 33

Command Error Status Register.
see CMR

Command execution, 2
Commands and Queries, 2-2

How they are described, 1
Notation, 1
Overview, 1
When they can be used, 1

Controller Timeout, 2-2
CURSOR_MEASURE, CRMS,

Command/Query, 34
CURSOR_SET, CRST,

Command/Query, 37
CURSOR_VALUE?, CRVA?,

Query, 39

D
Data

Arrays, 4-1, 4-2
ASCII forms, 2-5
Blocks, 4-2
Formatting, 4-4, 4-10
HEX mode, 4-10
Horizontal position, 4-9
Interpretation, 4-5, 4-8
Sparsing, 4-10
Values, 4-3, 4-7
Vertical reading, 4-8

Index

DATA_POINTS, DPNT,
Command/Query, 40

DATE, Command/Query, 41
DCL (Device CLear), 3-2
DDR (Device Dependent Error

Status Register), 5-6
DDR?, Query, 42
DEFINE, DEF, Command/Query,

43
DELETE_FILE, DELF, Command,

49
Descriptor

Block, 4-2
Values, 4-3, 4-7

Device Dependent Error Status
Register. see DDR

DIRECTORY, DIR,
Command/Query, 50

DIRECTORY, DISP,
Command/Query, 52

DOT_JOIN, DTJN,
Command/Query, 53

DUAL_ZOOM, DZOM,
Command/Query, 54

E
Error Messages, 2-1
ESE (Standard Event Status

Enable Register), 1, 3
ESE, Command/Query, 55
ESR (Standard Event Status

Register), 5-2, 5-4
ESR?, Query, 56
Ethernet, 3-1

Address, 3-2
programming transfers, 3-3

Execution Error Status Register.
see EXR

EXR (Execution Error Status
Register), 5-1, 5-6

EXR?, Query, 59

F
FILENAME, FLNM,

Command/Query, 61
FIND_CTR_RANGE, FCR,

Command, 62
FORMAT_CARD, FCRD,

Command/Query, 63
FORMAT_FLOPPY, FFLP,

Command/Query, 65
FORMAT_HDD, FHDD,

Command/Query, 67
FULL_SCREEN, FSCR,

Command/Query, 69
FUNCTION_RESET, FRST,

Command, 70

G
GAIN_MODE, GMOD,

Command/Query, 71
GET (Group Execute Trigger), 3-2
GLOBAL_BWL, GBWL,

Command/Query, 72
GPIB, 3-2
GRID, Command/Query, 73

H
Header, 2-3, 3-2
Header Path, 2-4
HOR_MAGNIFY, HMAG,

Command/Query, 74
HOR_POSITION, HPOS,

Command/Query, 75

I
IDN?, Query, 77
IEEE 488.1, 2-1
IEEE 488.2, 2-1, 5-1, 5-4
INE (Internal State Change Enable

Register), 5-1, 5-3, 5-5
INE, Command/Query, 78

INR (Internal State Change Status
Register), 5-2, 5-5

INR?, Query, 79
INSPECT? Queries, 4-2
INSPECT?, INSP?, Query, 82
INTENSITY, INTS,

Command/Query, 81
Internal State Change Enable

Register. see INE
Internal State Change Status

Register. see INR
IP Address, 3-2
IST Polling, 5-2, 5-5
IST?, Query, 84

L
Logical Data Blocks, 4-1

M
Maintenance, 1-1
MEMORY_SIZE, MSIZ,

Command/Query, 85
MULTI_ZOOM, MZOM,

Command/Query, 86
Multiple client support, 3-4

N
NAGLE Algorithm, 3-3, 3-4
Notation, 5-2

O
OFFSET, OFST,

Command/Query, 87
OPC, Command/Query, 88
OPT?, Query, 89

P
Packing and Shipment, 1-3
Parallel Poll Enable Register. see

PRE
Parameter measurements, 5-31
PARAMETER_CLR, PACL,

Command, 91

PARAMETER_CUSTOM, PACU,
Command/Query, 92

PARAMETER_DELETE, PADL,
Command, 96

PARAMETER_STATISTICS?,
PAST?, Query, 97

PARAMETER_VALUE?, PAVA?,
Query, 98

PASS_FAIL_CONDITION, PFCO,
Command/Query, 101

PASS_FAIL_COUNTER, PFCT,
Command/Query, 103

PASS_FAIL_DO, PFDO,
Command/Query, 104

PASS_FAIL_MASK, PFMS,
Command, 106

PASS_FAIL_STATUS?, PFST?,
Query, 107

PER_CURSOR_SET, PECS,
Command/Query, 108

PER_CURSOR_VALUE?,
PECV?, Query, 110

PERSIST, PERS,
Command/Query, 111

PERSIST_COLOR, PECL,
Command/Query, 112

PERSIST_LAST, PELT,
Command/Query, 113

PERSIST_SAT, PESA,
Command/Query, 114

PERSIST_SETUP, PESU,
Command/Query, 115

Port Number, 3-1
PRE (Parallel Poll Enable

Register), 5-2, 5-5
PRE, Command/Query, 116
Program Messages, 2-1, 2-2

R
RECALL, REC, Command, 117
Recovery mechanism, 3-3
REFERENCE_CLOCK, RCLK,

Command/Query, 118
Response Messages, 2-6

Index

Return, 1-3
RST, Command, 119

S
SDC (Selected Device CLear), 3-2
SEQUENCE, SEQ,

Command/Query, 120
Service and Repair, 1-2
Service Request Enable Register.

see SRE
Service Request Reporting, 5-1
SIMPLE, 4-2
SRE (Service Request Enable

Register), 5-1, 5-2, 5-5
SRE, Command/Query, 122
SRQ (Service Request), 5-2
Standard Event Status Register.

see ESR
Standard Messages, 3-2
Status Byte Register. see STB
Status Register Reporting, 5-1
STB (Status Byte Register), 5-3
STB?, Query, 123
STOP, Command, 125
STORE, STO, Command, 126
STORE_SETUP, STST,

Command/Query, 127
STORE_TEMPLATE, STTM,

Command, 128

T
TCP, 3-1
TCP/IP, 3-1
Template, 4-1, 4-3, 4-8, 4-9, A-1
TEMPLATE?, TMPL?, Query, 129
Terminators, 2-2, 4-7
TIME_DIV, TDIV,

Command/Query, 130
TRACE, TRA, Command/Query,

131
TRG, Command, 132
TRIG_DELAY, TRDL,

Command/Query, 133

TRIG_LEVEL, TRLV,
Command/Query, 134

TRIG_MODE, TRMD,
Command/Query, 135

TRIG_SELECT TRSE,
Command/Query, 136

TRIG_SLOPE, TRSL,
Command/Query, 137

TRIG_WINDOW, TRWI,
Command/Query, 138

TST?, Query, 139

U
USB, 3-1
USERTEXT, 4-2

V
VCIP, 3-1
VERT_MAGNIFY, VMAG,

Command/Query, 140
VERT_POSITION, VPOS,

Command/Query, 141
VOLT_DIV, VDIV,

Command/Query, 142
VOLT_RANGE, VRNG,

Command/Query, 143

W
WAI, Command, 144
WAIT, Command, 145
Warning Messages, 2-1
Warranty, 1-1
WAVEDESC. see Descriptor
WAVEFORM

Command, 4-9
Query, 4-4, 4-10
Transfer optimization, 4-10

Waveform Template, A-1
WAVEFORM, WF,

Command/Query, 146
WAVEFORM_SETUP, WFSU,

Command/Query, 148

WAVEFORM_TEXT, WFTX,
Command/Query, 150

Windows, 3-1
WinSock, 3-1

X
XY_ASSIGN?, XYAS?, Query,

151
XY_CURSOR_ORIGIN, XYCO,

Command/Query, 152
XY_CURSOR_SET, XYCS,

Command/Query, 153
XY_CURSOR_VALUE?, XYCV?,

Query, 155
XY_DISPLAY, XYDS,

Command/Query, 157
XY_SATURATION, XYSA,

Command/Query, 158

Index

